Abstract

The wing-scale microstructures associated with two species of Papilio butterfly are described and characterized. Despite close similarities in their structures, they do not exhibit analogous optical effects. With Papilio palinurus, deep modulations in its multilayering create bicolor reflectivity with strong polarization effects, and this leads to additive color mixing in certain visual systems. In contrast to this, Papilio ulysses features shallow multilayer modulation that produces monocolor reflectivity without significant polarization effects.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30, 3492–3500 (1991).
    [CrossRef] [PubMed]
  2. W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- und Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
    [CrossRef]
  3. T. F. Anderson, A. G. Richards, “An electron microscope study of some structural colors of insects,” J. Appl. Phys. 13, 748–758 (1942).
    [CrossRef]
  4. P. Vukusic, J. R. Sambles, H. Ghiradella, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).
  5. P. Vukusic, J. R. Sambles, C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
    [CrossRef]
  6. R. W. Burnham, R. M. Hanes, C. J. Bartleson, Color (Wiley, New York, 1963).
  7. A. Vašicek, Optics of Thins Films (North-Holland, Amsterdam, 1960).
  8. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
    [CrossRef] [PubMed]
  9. H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, London, 1969).
  10. P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
    [CrossRef]
  11. M. Land, School of Biological Sciences, Sussex University, Brighton BN1 9QG, UK (personal communication, 1999).
  12. J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).
  13. P. R. Lewis, D. P. Knight, Staining Methods for Sectioned Material (North-Holland, Oxford, 1977).
  14. H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution, Washington, D.C., 1991).
  15. D. L. Fox, Animal Biochromes and Structural Colours (University of California Press, Berkeley, Calif., 1976).
  16. R. I. Vane-Wright, “The coloration, identification and phylogeny of Nessaea butterflies (Lepidoptera: Nymphalidae),” Bull. Br. Mus. (Nat. Hist.) Entomol. 38, 2, 29–56 (1979).
  17. R. Lewis, “The optics of feather colour,” Biophotonics Int. (April, 1999), pp. 38–39.
  18. C. W. Mason, “Structural colours in feathers I,” J. Phys. Chem. 27, 205–251 (1923).
  19. H. M. Fox, G. Vevers, The Nature of Animal Colours (Sidgwick and Jackson, London, 1960).
  20. F. Frank, “Die färbung der vogelfeder durch pigment und struktur,” J. Orn. Lpz. 3, 426–523 (1939).
    [CrossRef]
  21. C. E. von Geldern, “Color changes and structure of the skin of Anolis carolinensis,” Proc. Calif. Acad. Sci. 10, 77–117 (1921).
  22. R. I. Vane-Wright, Keeper of Entomology, Natural History Museum, London SW7 5BD, UK (personal communication, 1999).
  23. J. Verne, F. Leyani, “Les dyschromies,” Traité de dermatologie (Paris) 2, 745–811 (1938).
  24. H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
    [CrossRef] [PubMed]
  25. R. M. Evans, “Visual processes and color photography,” J. Opt. Soc. Am. 33, 579–614 (1943).
    [CrossRef]
  26. D. L. MacAdam, “Perceptions of colour in projected and televised pictures,” J. Soc. Motion Pict. Tel. Eng. 65, 455–4669 (1956).
  27. F. W. Billmeyer, M. Saltzman, Principles of Color Technology (Wiley, New York, 1981).
  28. M. I. Sobel, Light (U. of Chicago Press, Chicago, 1987).
  29. G. A. Agoston, Color Theory and its Applications in Art and Design (Springer-Verlag, New-York, 1987).
    [CrossRef]
  30. A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402, 251 (1999).
    [CrossRef]
  31. K. Bandai, K. Arikawa, E. Eguchi, “Localisation of spectral receptors in the ommatidium of butterfly compound eye determined by polarisation sensitivity,” J. Comp. Physiol. A 171, 289–297 (1992).

2000

P. Vukusic, J. R. Sambles, H. Ghiradella, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

P. Vukusic, J. R. Sambles, C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef]

1999

P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

R. Lewis, “The optics of feather colour,” Biophotonics Int. (April, 1999), pp. 38–39.

A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402, 251 (1999).
[CrossRef]

1992

K. Bandai, K. Arikawa, E. Eguchi, “Localisation of spectral receptors in the ommatidium of butterfly compound eye determined by polarisation sensitivity,” J. Comp. Physiol. A 171, 289–297 (1992).

1991

1979

R. I. Vane-Wright, “The coloration, identification and phylogeny of Nessaea butterflies (Lepidoptera: Nymphalidae),” Bull. Br. Mus. (Nat. Hist.) Entomol. 38, 2, 29–56 (1979).

1975

J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).

1972

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

1959

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- und Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

1956

D. L. MacAdam, “Perceptions of colour in projected and televised pictures,” J. Soc. Motion Pict. Tel. Eng. 65, 455–4669 (1956).

1943

1942

T. F. Anderson, A. G. Richards, “An electron microscope study of some structural colors of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

1939

F. Frank, “Die färbung der vogelfeder durch pigment und struktur,” J. Orn. Lpz. 3, 426–523 (1939).
[CrossRef]

1938

J. Verne, F. Leyani, “Les dyschromies,” Traité de dermatologie (Paris) 2, 745–811 (1938).

1923

C. W. Mason, “Structural colours in feathers I,” J. Phys. Chem. 27, 205–251 (1923).

1921

C. E. von Geldern, “Color changes and structure of the skin of Anolis carolinensis,” Proc. Calif. Acad. Sci. 10, 77–117 (1921).

Agoston, G. A.

G. A. Agoston, Color Theory and its Applications in Art and Design (Springer-Verlag, New-York, 1987).
[CrossRef]

Anderson, T. F.

T. F. Anderson, A. G. Richards, “An electron microscope study of some structural colors of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

Aneshansley, D.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Arikawa, K.

K. Bandai, K. Arikawa, E. Eguchi, “Localisation of spectral receptors in the ommatidium of butterfly compound eye determined by polarisation sensitivity,” J. Comp. Physiol. A 171, 289–297 (1992).

Bandai, K.

K. Bandai, K. Arikawa, E. Eguchi, “Localisation of spectral receptors in the ommatidium of butterfly compound eye determined by polarisation sensitivity,” J. Comp. Physiol. A 171, 289–297 (1992).

Bartleson, C. J.

R. W. Burnham, R. M. Hanes, C. J. Bartleson, Color (Wiley, New York, 1963).

Billmeyer, F. W.

F. W. Billmeyer, M. Saltzman, Principles of Color Technology (Wiley, New York, 1981).

Burnham, R. W.

R. W. Burnham, R. M. Hanes, C. J. Bartleson, Color (Wiley, New York, 1963).

Eguchi, E.

K. Bandai, K. Arikawa, E. Eguchi, “Localisation of spectral receptors in the ommatidium of butterfly compound eye determined by polarisation sensitivity,” J. Comp. Physiol. A 171, 289–297 (1992).

Eisner, T.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Evans, R. M.

Fox, D. L.

D. L. Fox, Animal Biochromes and Structural Colours (University of California Press, Berkeley, Calif., 1976).

Fox, H. M.

H. M. Fox, G. Vevers, The Nature of Animal Colours (Sidgwick and Jackson, London, 1960).

Frank, F.

F. Frank, “Die färbung der vogelfeder durch pigment und struktur,” J. Orn. Lpz. 3, 426–523 (1939).
[CrossRef]

Gentil, K.

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- und Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

Ghiradella, H.

P. Vukusic, J. R. Sambles, H. Ghiradella, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30, 3492–3500 (1991).
[CrossRef] [PubMed]

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Hanes, R. M.

R. W. Burnham, R. M. Hanes, C. J. Bartleson, Color (Wiley, New York, 1963).

Hinton, H. E.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Huxley, J.

J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).

Kelber, A.

A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402, 251 (1999).
[CrossRef]

Knight, D. P.

P. R. Lewis, D. P. Knight, Staining Methods for Sectioned Material (North-Holland, Oxford, 1977).

Land, M.

M. Land, School of Biological Sciences, Sussex University, Brighton BN1 9QG, UK (personal communication, 1999).

Land, M. F.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Lewis, P. R.

P. R. Lewis, D. P. Knight, Staining Methods for Sectioned Material (North-Holland, Oxford, 1977).

Lewis, R.

R. Lewis, “The optics of feather colour,” Biophotonics Int. (April, 1999), pp. 38–39.

Leyani, F.

J. Verne, F. Leyani, “Les dyschromies,” Traité de dermatologie (Paris) 2, 745–811 (1938).

Lippert, W.

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- und Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

MacAdam, D. L.

D. L. MacAdam, “Perceptions of colour in projected and televised pictures,” J. Soc. Motion Pict. Tel. Eng. 65, 455–4669 (1956).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, London, 1969).

Mason, C. W.

C. W. Mason, “Structural colours in feathers I,” J. Phys. Chem. 27, 205–251 (1923).

Nijhout, H. F.

H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution, Washington, D.C., 1991).

Richards, A. G.

T. F. Anderson, A. G. Richards, “An electron microscope study of some structural colors of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

Saltzman, M.

F. W. Billmeyer, M. Saltzman, Principles of Color Technology (Wiley, New York, 1981).

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef]

P. Vukusic, J. R. Sambles, H. Ghiradella, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Silbergleid, R. E.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Sobel, M. I.

M. I. Sobel, Light (U. of Chicago Press, Chicago, 1987).

Vane-Wright, R. I.

R. I. Vane-Wright, “The coloration, identification and phylogeny of Nessaea butterflies (Lepidoptera: Nymphalidae),” Bull. Br. Mus. (Nat. Hist.) Entomol. 38, 2, 29–56 (1979).

R. I. Vane-Wright, Keeper of Entomology, Natural History Museum, London SW7 5BD, UK (personal communication, 1999).

Vašicek, A.

A. Vašicek, Optics of Thins Films (North-Holland, Amsterdam, 1960).

Verne, J.

J. Verne, F. Leyani, “Les dyschromies,” Traité de dermatologie (Paris) 2, 745–811 (1938).

Vevers, G.

H. M. Fox, G. Vevers, The Nature of Animal Colours (Sidgwick and Jackson, London, 1960).

von Geldern, C. E.

C. E. von Geldern, “Color changes and structure of the skin of Anolis carolinensis,” Proc. Calif. Acad. Sci. 10, 77–117 (1921).

Vukusic, P.

P. Vukusic, J. R. Sambles, H. Ghiradella, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

P. Vukusic, J. R. Sambles, C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Appl. Opt.

Biophotonics Int.

R. Lewis, “The optics of feather colour,” Biophotonics Int. (April, 1999), pp. 38–39.

Bull. Br. Mus. (Nat. Hist.) Entomol.

R. I. Vane-Wright, “The coloration, identification and phylogeny of Nessaea butterflies (Lepidoptera: Nymphalidae),” Bull. Br. Mus. (Nat. Hist.) Entomol. 38, 2, 29–56 (1979).

J. Appl. Phys.

T. F. Anderson, A. G. Richards, “An electron microscope study of some structural colors of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

J. Comp. Physiol. A

K. Bandai, K. Arikawa, E. Eguchi, “Localisation of spectral receptors in the ommatidium of butterfly compound eye determined by polarisation sensitivity,” J. Comp. Physiol. A 171, 289–297 (1992).

J. Entomol. Ser. A

J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).

J. Opt. Soc. Am.

J. Orn. Lpz.

F. Frank, “Die färbung der vogelfeder durch pigment und struktur,” J. Orn. Lpz. 3, 426–523 (1939).
[CrossRef]

J. Phys. Chem.

C. W. Mason, “Structural colours in feathers I,” J. Phys. Chem. 27, 205–251 (1923).

J. Soc. Motion Pict. Tel. Eng.

D. L. MacAdam, “Perceptions of colour in projected and televised pictures,” J. Soc. Motion Pict. Tel. Eng. 65, 455–4669 (1956).

Nature

A. Kelber, “Why ‘false’ colours are seen by butterflies,” Nature 402, 251 (1999).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, “Structural colour: colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef]

Photonics Sci. News

P. Vukusic, J. R. Sambles, H. Ghiradella, “Optical classification of microstructure in butterfly wing scales,” Photonics Sci. News 6, 61–66 (2000).

Proc. Calif. Acad. Sci.

C. E. von Geldern, “Color changes and structure of the skin of Anolis carolinensis,” Proc. Calif. Acad. Sci. 10, 77–117 (1921).

Proc. R. Soc. London Ser. B

P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Prog. Biophys. Mol. Biol.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

Science

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silbergleid, H. E. Hinton, “Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Traité de dermatologie (Paris)

J. Verne, F. Leyani, “Les dyschromies,” Traité de dermatologie (Paris) 2, 745–811 (1938).

Z. Morphol. Oekol. Tiere

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- und Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

Other

H. M. Fox, G. Vevers, The Nature of Animal Colours (Sidgwick and Jackson, London, 1960).

P. R. Lewis, D. P. Knight, Staining Methods for Sectioned Material (North-Holland, Oxford, 1977).

H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution, Washington, D.C., 1991).

D. L. Fox, Animal Biochromes and Structural Colours (University of California Press, Berkeley, Calif., 1976).

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, London, 1969).

M. Land, School of Biological Sciences, Sussex University, Brighton BN1 9QG, UK (personal communication, 1999).

R. W. Burnham, R. M. Hanes, C. J. Bartleson, Color (Wiley, New York, 1963).

A. Vašicek, Optics of Thins Films (North-Holland, Amsterdam, 1960).

R. I. Vane-Wright, Keeper of Entomology, Natural History Museum, London SW7 5BD, UK (personal communication, 1999).

F. W. Billmeyer, M. Saltzman, Principles of Color Technology (Wiley, New York, 1981).

M. I. Sobel, Light (U. of Chicago Press, Chicago, 1987).

G. A. Agoston, Color Theory and its Applications in Art and Design (Springer-Verlag, New-York, 1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Full-color image of (a) P. palinurus and (b) P. ulysses butterflies showing their iridescent green and iridescent blue coloration [scale bars: (a) 1.5 cm and (b) 1.5 cm].

Fig. 2
Fig. 2

SEM micrographs of P. palinurus: (a) whole iridescent scale on the wing, (b) a small region of iridescent scale, and (c) single concavity [scale bars: (a) 10 µm, (b) 5 µm, and (c) 1 µm].

Fig. 3
Fig. 3

SEM micrographs of P. ulysses: (a) single concavity and (b) iridescent scales on the wing [scale bars: (a) 1 µm and (b) 20 µm].

Fig. 4
Fig. 4

TEM micrographs showing cross sections through iridescent scales of P. palinurus (perpendicular to ridges, with inset image showing the arrangement of several of the concavities across a single scale). [scale bars: 1 µm (inset 3 µm)].

Fig. 5
Fig. 5

TEM micrographs showing cross sections through iridescent scales of P. ulysses (perpendicular to ridges, with bottom inset image showing cross section taken parallel to ridges and top inset image showing arrangement of several neighboring concavities). [scale bars: 1 µm (top inset 3 µm and bottom inset 1 µm)].

Fig. 6
Fig. 6

Optical microscopy images of a region of (a) P. palinurus iridescent scale and (b) P. ulysses iridescent scale [scale bars: (a) and (b), 10 µm].

Fig. 7
Fig. 7

Optical microscopy images of a region of a P. palinurus iridescent scale: (a) using input and output polarizers crossed with respect to each other and (b) input and output polarizers crossed with respect to each other but the sample rotated azimuthally through 45 deg from position in (a) [scale bars: (a) and (b), 10 µm]. C1 and C2 represent concavities 1 and 2 to clarify the sample rotation.

Fig. 8
Fig. 8

Solid curves represent the results from the theoretical model and compare well with data collected from P. palinurus (triangles) and P. ulysses (circles). For P. palinurus the solid curve represents the integrated contribution of a single reflection from a flat P. palinurus multilayer (dashed curve) and a double reflection from an identical 45-deg-tilted multilayer (dotted curve). This shows the effect of the color mixing that produces the green of the wing. Inset graph shows secondary reflection maxima for theory and experiment for both butterflies at near-UV wavelengths that are not represented on the main graph.

Fig. 9
Fig. 9

High-magnification TEM micrograph of a cross section through a P. ulysses scale ridge (scale bar: 0.5 µm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

XY=r=1ncos δri sin δrηriηr sin δrcos δr1ηn+1,
R=(η0X-Y)(η0X-Y)*(η0X+Y)(η0X+Y)*,

Metrics