Abstract

During construction of a Shack–Hartmann wave-front sensor it is critical that the spacing between the lens array and the detector array be equal to the lens array focal length to obtain accurate and precise measurements of a wave front. This separation is often difficult to determine with large f/# lenses, because their focal spot diameter does not change substantially for small displacements on either side of the focal plane. We describe a method with an array of off-axis lens segments for determining the location of the focal plane. Because the lenses are off axis, changes in the distance from the optic to the detector array result in transverse focal spot position variations as a function of their separation from the lenses. By analyzing the focal spot pattern on a CCD, we achieved 12-µm rms error in the axial position measurement while moving a 4-mm-focal-length optic over 1 mm.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, M. P. Jelonek, W. J. Lange, A. C. Slavin, W. J. Wild, D. M. Winker, J. M. Wynia, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. F. Moroney, M. D. Oliker, D. W. Swindle, R. A. Cleis, “Two generations of laser-guide-star adaptive-optics experiments at the Starfire Optical Range,” J. Opt. Soc. Am. A 11, 310–24 (1994).
  2. D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” in 3rd International Workshop on Laser Beam and Optics Characterization, M. Morin, A. Giesen, eds., Proc. SPIE2870, 72–82 (1996).
  3. D. R. Neal, D. J. Armstrong, W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” in Lasers as Tools for Manufacturing II, L. R. Migliore, R. D. Schaeffer, eds., Proc. SPIE2993, 1–10 (1997).
  4. W. B. Veldkamp, T. J. McHugh, “Binary optics,” Sci. Am. 266, 50–5 (1992).
  5. Graymask technology is available from Canyon Materials, Inc., San Diego, Calif.
  6. A. Y. Feldblum, C. R. Nijander, W. P. Townsend, C. M. Mayer-Costa, “Performance and measurements of refractive microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 200–208 (1991).
  7. D. R. Neal, Wavefront Sciences, Inc., 15800 Central Ave., Albuquerque, N.M. 87123 (personal communication, 1998).
  8. J. D. Mansell, D. R. Neal. “Automated pupil remapping with binary optics.” U.S. patent5,864,381 (Jan.26, 1999).
  9. D. R. Neal, J. D. Mansell, J. K. Gruetzner, R. Morgan, M. E. Warren, “Specialized wavefront sensors for adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 338–48 (1996).
  10. Figure from 8-bit CLAS-2D literature from Wavefront Sciences, Inc., Albuquerque, N.M. 87123.

1994 (1)

1992 (1)

W. B. Veldkamp, T. J. McHugh, “Binary optics,” Sci. Am. 266, 50–5 (1992).

Alford, W. J.

D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” in 3rd International Workshop on Laser Beam and Optics Characterization, M. Morin, A. Giesen, eds., Proc. SPIE2870, 72–82 (1996).

Armstrong, D. J.

D. R. Neal, D. J. Armstrong, W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” in Lasers as Tools for Manufacturing II, L. R. Migliore, R. D. Schaeffer, eds., Proc. SPIE2993, 1–10 (1997).

Boeke, B. R.

Cleis, R. A.

Ellerbroek, B. L.

Feldblum, A. Y.

A. Y. Feldblum, C. R. Nijander, W. P. Townsend, C. M. Mayer-Costa, “Performance and measurements of refractive microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 200–208 (1991).

Fugate, R. Q.

Gruetzner, J. K.

D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” in 3rd International Workshop on Laser Beam and Optics Characterization, M. Morin, A. Giesen, eds., Proc. SPIE2870, 72–82 (1996).

D. R. Neal, J. D. Mansell, J. K. Gruetzner, R. Morgan, M. E. Warren, “Specialized wavefront sensors for adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 338–48 (1996).

Higgins, C. H.

Jelonek, M. P.

Lange, W. J.

Mansell, J. D.

D. R. Neal, J. D. Mansell, J. K. Gruetzner, R. Morgan, M. E. Warren, “Specialized wavefront sensors for adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 338–48 (1996).

J. D. Mansell, D. R. Neal. “Automated pupil remapping with binary optics.” U.S. patent5,864,381 (Jan.26, 1999).

Mayer-Costa, C. M.

A. Y. Feldblum, C. R. Nijander, W. P. Townsend, C. M. Mayer-Costa, “Performance and measurements of refractive microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 200–208 (1991).

McHugh, T. J.

W. B. Veldkamp, T. J. McHugh, “Binary optics,” Sci. Am. 266, 50–5 (1992).

Morgan, R.

D. R. Neal, J. D. Mansell, J. K. Gruetzner, R. Morgan, M. E. Warren, “Specialized wavefront sensors for adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 338–48 (1996).

Moroney, J. F.

Neal, D. R.

D. R. Neal, D. J. Armstrong, W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” in Lasers as Tools for Manufacturing II, L. R. Migliore, R. D. Schaeffer, eds., Proc. SPIE2993, 1–10 (1997).

D. R. Neal, Wavefront Sciences, Inc., 15800 Central Ave., Albuquerque, N.M. 87123 (personal communication, 1998).

D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” in 3rd International Workshop on Laser Beam and Optics Characterization, M. Morin, A. Giesen, eds., Proc. SPIE2870, 72–82 (1996).

D. R. Neal, J. D. Mansell, J. K. Gruetzner, R. Morgan, M. E. Warren, “Specialized wavefront sensors for adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 338–48 (1996).

J. D. Mansell, D. R. Neal. “Automated pupil remapping with binary optics.” U.S. patent5,864,381 (Jan.26, 1999).

Nijander, C. R.

A. Y. Feldblum, C. R. Nijander, W. P. Townsend, C. M. Mayer-Costa, “Performance and measurements of refractive microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 200–208 (1991).

Oliker, M. D.

Ruane, R. E.

Slavin, A. C.

Spinhirne, J. M.

Swindle, D. W.

Townsend, W. P.

A. Y. Feldblum, C. R. Nijander, W. P. Townsend, C. M. Mayer-Costa, “Performance and measurements of refractive microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 200–208 (1991).

Turner, W. T.

D. R. Neal, D. J. Armstrong, W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” in Lasers as Tools for Manufacturing II, L. R. Migliore, R. D. Schaeffer, eds., Proc. SPIE2993, 1–10 (1997).

Veldkamp, W. B.

W. B. Veldkamp, T. J. McHugh, “Binary optics,” Sci. Am. 266, 50–5 (1992).

Warren, M. E.

D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” in 3rd International Workshop on Laser Beam and Optics Characterization, M. Morin, A. Giesen, eds., Proc. SPIE2870, 72–82 (1996).

D. R. Neal, J. D. Mansell, J. K. Gruetzner, R. Morgan, M. E. Warren, “Specialized wavefront sensors for adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 338–48 (1996).

Wild, W. J.

Winker, D. M.

Wynia, J. M.

J. Opt. Soc. Am. A (1)

Sci. Am. (1)

W. B. Veldkamp, T. J. McHugh, “Binary optics,” Sci. Am. 266, 50–5 (1992).

Other (8)

Graymask technology is available from Canyon Materials, Inc., San Diego, Calif.

A. Y. Feldblum, C. R. Nijander, W. P. Townsend, C. M. Mayer-Costa, “Performance and measurements of refractive microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 200–208 (1991).

D. R. Neal, Wavefront Sciences, Inc., 15800 Central Ave., Albuquerque, N.M. 87123 (personal communication, 1998).

J. D. Mansell, D. R. Neal. “Automated pupil remapping with binary optics.” U.S. patent5,864,381 (Jan.26, 1999).

D. R. Neal, J. D. Mansell, J. K. Gruetzner, R. Morgan, M. E. Warren, “Specialized wavefront sensors for adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 338–48 (1996).

Figure from 8-bit CLAS-2D literature from Wavefront Sciences, Inc., Albuquerque, N.M. 87123.

D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” in 3rd International Workshop on Laser Beam and Optics Characterization, M. Morin, A. Giesen, eds., Proc. SPIE2870, 72–82 (1996).

D. R. Neal, D. J. Armstrong, W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” in Lasers as Tools for Manufacturing II, L. R. Migliore, R. D. Schaeffer, eds., Proc. SPIE2993, 1–10 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM picture of the 4-mm-focal-length 100-µm square off-axis lens array.

Fig. 2
Fig. 2

Cross-sectional drawing of a pair of off-axis lenses and the light rays propagating through them. The focal length of the lenses is the same, but each has a different off-axis travel given by x 1 and x 2. In the focal plane the separation of the spots is a distance d design. If the imaging device is at a plane Δf from the focal plane, the distance between the spots is d measured.

Fig. 3
Fig. 3

Map of the direction light travels when moving from the lens array to the focal plane. Lenses centered on the circles were fabricated off axis so as to move their focal spots to the squares along the vectors identified by the arrows.

Fig. 4
Fig. 4

Image of the spot pattern at the focal plane (a) showing the regular array of spots and an image 1 mm before the focal plane and (b) showing the spots out of position.

Fig. 5
Fig. 5

Position of the lens array along the propagation axis extracted from the images of the spot array and the associated linear fit to the data.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δf=(dmeasured-ddesign) fx1-x2,
Δfdmeasured=fx1-x2.
f=r22S(n-1),
Δ=hf(n-1)d,
Δ=h(n-1)dr22S(n-1)=hSr4.

Metrics