Abstract

An original acousto-optic method is described that allows one to reveal optical contrasts through biological tissues that are several centimeters thick with a millimeter-sized resolution. This technique is based on the interaction of scattered laser light with a focused ultrasonic field. The modulation depth of the optical speckle is related to local optical properties of the sample. Our parallel-processing approach to the demodulation of the speckle improves the observed degree of modulation by 2 orders of magnitude and quickly yields a good statistical value. Optically absorbing objects were imaged inside 35-mm-thick biological tissues.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  2. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999).
    [CrossRef]
  3. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994).
    [CrossRef]
  4. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images using multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
    [CrossRef]
  5. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  6. A. A. Oraevsky, “Opto-acoustic tomography of deeply embedded tumors and early subsurface lesions,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/Europe), Technical Digest (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 236–238.
  7. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
    [CrossRef]
  8. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [CrossRef]
  9. L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  10. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  11. L. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  12. S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “A multidetector approach to ultrasonic speckle modulation imaging,” in Vol. 23 of OSA Trends in Optics and Photonics Series, Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds. (Optical Society of America, Washington, D.C., 1998), pp. 397–399.
  13. L. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
    [CrossRef]
  14. S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  15. G. Yao, L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
    [CrossRef]
  16. J. Lewiner, ed., L’imagerie du corps humain (Editions du Physique, Paris, 1984).
  17. J. Perdijon, L’écographie: contrôle non destructif, examen medical (Dunod, Paris, 1981).
  18. P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique, II, l’approche multidétecteur et la detection synchrone multiplexée,” J. Opt. 26, 251–265 (1995).
    [CrossRef]

2000 (1)

1999 (4)

1998 (2)

1997 (2)

1995 (3)

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique, II, l’approche multidétecteur et la detection synchrone multiplexée,” J. Opt. 26, 251–265 (1995).
[CrossRef]

1994 (1)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994).
[CrossRef]

Arridge, S. R.

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994).
[CrossRef]

Boccara, A. C.

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique, II, l’approche multidétecteur et la detection synchrone multiplexée,” J. Opt. 26, 251–265 (1995).
[CrossRef]

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “A multidetector approach to ultrasonic speckle modulation imaging,” in Vol. 23 of OSA Trends in Optics and Photonics Series, Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds. (Optical Society of America, Washington, D.C., 1998), pp. 397–399.

Boppart, S. A.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Chak, A.

Chance, B.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994).
[CrossRef]

de Mul, F. F. M.

Dekker, A.

Delpy, D. T.

Drexler, W.

Fry, M. E.

Fujimoto, J. G.

Genack, A. Z.

Gleyzes, P.

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique, II, l’approche multidétecteur et la detection synchrone multiplexée,” J. Opt. 26, 251–265 (1995).
[CrossRef]

Guernet, F.

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique, II, l’approche multidétecteur et la detection synchrone multiplexée,” J. Opt. 26, 251–265 (1995).
[CrossRef]

Hebden, J. C.

Hillman, E. M. C.

Hoelen, C. G. A.

Ippen, E. P.

Izatt, J. A.

Jacques, S. L.

Kartner, F. X.

Kempe, M.

Kobayashi, K.

Ku, G.

Larionov, M.

Lebec, M.

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “A multidetector approach to ultrasonic speckle modulation imaging,” in Vol. 23 of OSA Trends in Optics and Photonics Series, Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds. (Optical Society of America, Washington, D.C., 1998), pp. 397–399.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Lévêque, S.

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “A multidetector approach to ultrasonic speckle modulation imaging,” in Vol. 23 of OSA Trends in Optics and Photonics Series, Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds. (Optical Society of America, Washington, D.C., 1998), pp. 397–399.

Li, X. D.

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Morgner, U.

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, “Opto-acoustic tomography of deeply embedded tumors and early subsurface lesions,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/Europe), Technical Digest (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 236–238.

Perdijon, J.

J. Perdijon, L’écographie: contrôle non destructif, examen medical (Dunod, Paris, 1981).

Pitris, C.

Pongers, R.

Rollins, A. M.

Saint-Jalmes, H.

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “A multidetector approach to ultrasonic speckle modulation imaging,” in Vol. 23 of OSA Trends in Optics and Photonics Series, Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds. (Optical Society of America, Washington, D.C., 1998), pp. 397–399.

Schmidt, F. E. W.

Schweiger, M.

Sivak, M. V.

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Ung-arunyawee, R.

Wang, L.

Wang, L. V.

Wong, R. C. K.

Yao, G.

Yodh, A. G.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994).
[CrossRef]

Zaslavsky, D.

Zhao, X.

Appl. Opt. (2)

J. Opt. (1)

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique, II, l’approche multidétecteur et la detection synchrone multiplexée,” J. Opt. 26, 251–265 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (7)

Physica B (1)

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical interfaces within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994).
[CrossRef]

Other (5)

A. A. Oraevsky, “Opto-acoustic tomography of deeply embedded tumors and early subsurface lesions,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/Europe), Technical Digest (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 236–238.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “A multidetector approach to ultrasonic speckle modulation imaging,” in Vol. 23 of OSA Trends in Optics and Photonics Series, Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds. (Optical Society of America, Washington, D.C., 1998), pp. 397–399.

J. Lewiner, ed., L’imagerie du corps humain (Editions du Physique, Paris, 1984).

J. Perdijon, L’écographie: contrôle non destructif, examen medical (Dunod, Paris, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Map of the pressure field induced by the ultrasound beam in and near the focal zone of the transducer. The map is drawn in a meridianal plane of the beam, which travels from the top to the bottom of the map.

Fig. 2
Fig. 2

Displacement induced by the ultrasonic field in the tissues along a straight line that is perpendicular to the axis of the ultrasound beam.

Fig. 3
Fig. 3

(a) Simulation of a speckle field. See Fig. 5 for the definitions of X and Z. (b) Simulated snapshot of the ac contribution superimposed on the dc speckle of (a) by the application of ultrasound to the scattering medium. (c) Dependence of the ac output signal of the detector on the number of speckle grains accommodated on the detector. (d) Sum of the modulation amplitudes of the individual speckle grains (the speckle-grain size matches the pixel size) plotted versus the number of speckle grains.

Fig. 4
Fig. 4

Each sequence S 1, S 2, S 3, and S 4 is obtained by the integration of the dc and the modulated portions of the light that reaches each pixel during the first, the second, the third, or the fourth quarter, respectively, of the ultrasonic period.

Fig. 5
Fig. 5

Schematic diagram of the experimental setup.

Fig. 6
Fig. 6

One-dimensional image of one and two absorbing cylinders with 3-mm diameters and 10-mm lengths in a 15-mm-thick turkey breast sample. The top curve represents a single cylinder; the bottom curve represents both cylinders.

Fig. 7
Fig. 7

Three-dimensional image of a 30-mm-thick turkey breast sample. The location of the 3-mm-diameter absorbing sphere is detected correctly as being in the XY and the XZ planes. As is mentioned in the text, because of the shape of the focal zone, the resolution is better in the XY plane than it is in the XZ plane.

Fig. 8
Fig. 8

Two-dimensional image of a whitish filament (presumably a ligament) inside a 2-cm-thick turkey breast sample.

Fig. 9
Fig. 9

(a) Photograph of a histologic cut of a woman’s uterus with a significant tumor. (b) Acousto-optic image of the uterus normal to the figure plane and delimited by the two short horizontal lines drawn in (a). As expected, the darker right-hand part of the image (normal tissue) presents a higher absorption level than does the whitish part on the left-hand side (the tumor).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

pr, t=-1χAr, tr=kuχ A0 cosωut-kur, A0=p0χku=p0Ztωu.
It=Idc+Iac cos2πf0t+ϕ1,
Dt=14+2πq=1+1qsinq π4cos2πqf0t.
Sp=0integration time Sptdt=0NT0 ItDt-p-1T04=NT0IdcD0+2NT0q=1+ IqDq cos2πq p4+ϕq,
S1=NT0Idc4+22π Iac cosϕ1, S2=NT0Idc4+22π Iac sinϕ1, S3=NT0Idc4-22π Iac cosϕ1, S4=NT0Idc4-22π Iac sinϕ1.
Iac=πNT02S1-S32+S2+S421/2, ϕ1=arctanS2-S4S1-S3.

Metrics