Abstract

Laser-induced fluorescence (LIF) spectroscopy is introduced as an in situ diagnostic for phenol and intermediate products in an aqueous solution degraded by corona discharges. The complications that are inherent in applying LIF as a diagnostic for aqueous solutions are experimentally examined. The LIF intensities of phenol and the intermediate products are measured as a function of time. The absolute phenol concentration is determined. We confirm the applicability of LIF spectroscopy for monitoring phenol concentration during degradation.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
    [CrossRef]
  2. A. K. Sharma, B. R. Locke, P. Arce, W. C. Finney, “A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions,” Hazard. Waste Hazard. Mater. 10, 209–220 (1993).
    [CrossRef]
  3. A. A. Joshi, B. R. Locke, P. Arce, W. C. Finney, “Formation of hydoxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater. 41, 3–30 (1995).
    [CrossRef]
  4. J. S. Clements, M. Sato, R. H. Davis, “Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water,” IEEE Trans. Ind. Appl. IA-23, 224–235 (1987).
    [CrossRef]
  5. M. Sato, T. Ohgiyama, J. S. Clements, “Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water,” IEEE Trans. Ind. Appl. 32, 106–112 (1996).
    [CrossRef]
  6. B. Sun, M. Sato, J. S. Clements, “Optical study of active species produced by a pulsed streamer corona discharge in water,” J. Electrost. 39, 189–202 (1997).
    [CrossRef]
  7. B. Sun, M. Sato, J. S. Clements, “Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution,” J. Phys. D 32, 1908–1915 (1999).
    [CrossRef]
  8. W. F. L. M. Hoeben, E. M. van Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “Gas phase corona discharges for oxidation of phenol in an aqueous solution,” J. Phys. D 32, L133–177 (1999).
    [CrossRef]
  9. K. Muraoka, M. Maeda, Laser-Aided Diagnostics for Plasmas and Gases (Sangyo-tosho, Tokyo, 1995).
  10. D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
    [CrossRef]
  11. A. Oikawa, H. Abe, N. Mikami, M. Ito, “Solvated phenol studied by supersonic jet spectroscopy,” J. Phys. Chem. 87, 5083–5086 (1983).
    [CrossRef]
  12. H. Abe, N. Mikami, M. Ito, “Fluorescence excitation spectra of hydrogen-bonded phenols in a supersonic free jet,” J. Phys. Chem. 86, 1768–1772 (1982).
    [CrossRef]
  13. G. Berden, W. L. Meerts, M. Schmitt, K. Kleinermanns, “High resolution UV spectroscopy of phenol and the hydrogen bonded phenol–water cluster,” J. Chem. Phys. 104, 972–982 (1996).
    [CrossRef]
  14. T. Burgi, S. Leutwyler, “O—H torsional vibration in the S0 and S1 states of catechol,” J. Chem. Phys. 101, 8418–8429 (1994).
    [CrossRef]
  15. S. J. Humphrey, D. W. Pratt, “High resolution S1 ← S0 fluorescence excitation spectra of hydroquinone. Distinguishing the cis and trans rotamers by their nulear spin statistical weights,” J. Chem. Phys. 99, 5078–5086 (1993).
    [CrossRef]
  16. W. F. L. M. Hoeben, Pulsed Corona-Induced Degradation of Organic Materials in Water (Eindhoven University of Technology, Eindhoven, The Netherlands, 2000).
  17. A. Gilbert, J. Baggott, Essentials of Molecular Photochemistry (Blackwell, Oxford, 1991).

2000 (1)

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

1999 (3)

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

B. Sun, M. Sato, J. S. Clements, “Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution,” J. Phys. D 32, 1908–1915 (1999).
[CrossRef]

W. F. L. M. Hoeben, E. M. van Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “Gas phase corona discharges for oxidation of phenol in an aqueous solution,” J. Phys. D 32, L133–177 (1999).
[CrossRef]

1997 (1)

B. Sun, M. Sato, J. S. Clements, “Optical study of active species produced by a pulsed streamer corona discharge in water,” J. Electrost. 39, 189–202 (1997).
[CrossRef]

1996 (2)

M. Sato, T. Ohgiyama, J. S. Clements, “Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water,” IEEE Trans. Ind. Appl. 32, 106–112 (1996).
[CrossRef]

G. Berden, W. L. Meerts, M. Schmitt, K. Kleinermanns, “High resolution UV spectroscopy of phenol and the hydrogen bonded phenol–water cluster,” J. Chem. Phys. 104, 972–982 (1996).
[CrossRef]

1995 (1)

A. A. Joshi, B. R. Locke, P. Arce, W. C. Finney, “Formation of hydoxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater. 41, 3–30 (1995).
[CrossRef]

1994 (1)

T. Burgi, S. Leutwyler, “O—H torsional vibration in the S0 and S1 states of catechol,” J. Chem. Phys. 101, 8418–8429 (1994).
[CrossRef]

1993 (2)

S. J. Humphrey, D. W. Pratt, “High resolution S1 ← S0 fluorescence excitation spectra of hydroquinone. Distinguishing the cis and trans rotamers by their nulear spin statistical weights,” J. Chem. Phys. 99, 5078–5086 (1993).
[CrossRef]

A. K. Sharma, B. R. Locke, P. Arce, W. C. Finney, “A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions,” Hazard. Waste Hazard. Mater. 10, 209–220 (1993).
[CrossRef]

1987 (1)

J. S. Clements, M. Sato, R. H. Davis, “Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water,” IEEE Trans. Ind. Appl. IA-23, 224–235 (1987).
[CrossRef]

1983 (1)

A. Oikawa, H. Abe, N. Mikami, M. Ito, “Solvated phenol studied by supersonic jet spectroscopy,” J. Phys. Chem. 87, 5083–5086 (1983).
[CrossRef]

1982 (1)

H. Abe, N. Mikami, M. Ito, “Fluorescence excitation spectra of hydrogen-bonded phenols in a supersonic free jet,” J. Phys. Chem. 86, 1768–1772 (1982).
[CrossRef]

Abe, H.

A. Oikawa, H. Abe, N. Mikami, M. Ito, “Solvated phenol studied by supersonic jet spectroscopy,” J. Phys. Chem. 87, 5083–5086 (1983).
[CrossRef]

H. Abe, N. Mikami, M. Ito, “Fluorescence excitation spectra of hydrogen-bonded phenols in a supersonic free jet,” J. Phys. Chem. 86, 1768–1772 (1982).
[CrossRef]

Arce, P.

A. A. Joshi, B. R. Locke, P. Arce, W. C. Finney, “Formation of hydoxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater. 41, 3–30 (1995).
[CrossRef]

A. K. Sharma, B. R. Locke, P. Arce, W. C. Finney, “A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions,” Hazard. Waste Hazard. Mater. 10, 209–220 (1993).
[CrossRef]

Babicky, V.

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

Baggott, J.

A. Gilbert, J. Baggott, Essentials of Molecular Photochemistry (Blackwell, Oxford, 1991).

Berden, G.

G. Berden, W. L. Meerts, M. Schmitt, K. Kleinermanns, “High resolution UV spectroscopy of phenol and the hydrogen bonded phenol–water cluster,” J. Chem. Phys. 104, 972–982 (1996).
[CrossRef]

Burgi, T.

T. Burgi, S. Leutwyler, “O—H torsional vibration in the S0 and S1 states of catechol,” J. Chem. Phys. 101, 8418–8429 (1994).
[CrossRef]

Cernak, M.

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

Clements, J. S.

B. Sun, M. Sato, J. S. Clements, “Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution,” J. Phys. D 32, 1908–1915 (1999).
[CrossRef]

B. Sun, M. Sato, J. S. Clements, “Optical study of active species produced by a pulsed streamer corona discharge in water,” J. Electrost. 39, 189–202 (1997).
[CrossRef]

M. Sato, T. Ohgiyama, J. S. Clements, “Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water,” IEEE Trans. Ind. Appl. 32, 106–112 (1996).
[CrossRef]

J. S. Clements, M. Sato, R. H. Davis, “Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water,” IEEE Trans. Ind. Appl. IA-23, 224–235 (1987).
[CrossRef]

Clupek, M.

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

Davis, R. H.

J. S. Clements, M. Sato, R. H. Davis, “Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water,” IEEE Trans. Ind. Appl. IA-23, 224–235 (1987).
[CrossRef]

Dooms, G.

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

Finney, W. C.

A. A. Joshi, B. R. Locke, P. Arce, W. C. Finney, “Formation of hydoxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater. 41, 3–30 (1995).
[CrossRef]

A. K. Sharma, B. R. Locke, P. Arce, W. C. Finney, “A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions,” Hazard. Waste Hazard. Mater. 10, 209–220 (1993).
[CrossRef]

Gilbert, A.

A. Gilbert, J. Baggott, Essentials of Molecular Photochemistry (Blackwell, Oxford, 1991).

Hayashi, D.

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

Hoeben, W. F. L. M.

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

W. F. L. M. Hoeben, E. M. van Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “Gas phase corona discharges for oxidation of phenol in an aqueous solution,” J. Phys. D 32, L133–177 (1999).
[CrossRef]

W. F. L. M. Hoeben, Pulsed Corona-Induced Degradation of Organic Materials in Water (Eindhoven University of Technology, Eindhoven, The Netherlands, 2000).

Humphrey, S. J.

S. J. Humphrey, D. W. Pratt, “High resolution S1 ← S0 fluorescence excitation spectra of hydroquinone. Distinguishing the cis and trans rotamers by their nulear spin statistical weights,” J. Chem. Phys. 99, 5078–5086 (1993).
[CrossRef]

Ito, M.

A. Oikawa, H. Abe, N. Mikami, M. Ito, “Solvated phenol studied by supersonic jet spectroscopy,” J. Phys. Chem. 87, 5083–5086 (1983).
[CrossRef]

H. Abe, N. Mikami, M. Ito, “Fluorescence excitation spectra of hydrogen-bonded phenols in a supersonic free jet,” J. Phys. Chem. 86, 1768–1772 (1982).
[CrossRef]

Joshi, A. A.

A. A. Joshi, B. R. Locke, P. Arce, W. C. Finney, “Formation of hydoxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater. 41, 3–30 (1995).
[CrossRef]

Kleinermanns, K.

G. Berden, W. L. Meerts, M. Schmitt, K. Kleinermanns, “High resolution UV spectroscopy of phenol and the hydrogen bonded phenol–water cluster,” J. Chem. Phys. 104, 972–982 (1996).
[CrossRef]

Kroesen, G. M. W.

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

W. F. L. M. Hoeben, E. M. van Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “Gas phase corona discharges for oxidation of phenol in an aqueous solution,” J. Phys. D 32, L133–177 (1999).
[CrossRef]

Leutwyler, S.

T. Burgi, S. Leutwyler, “O—H torsional vibration in the S0 and S1 states of catechol,” J. Chem. Phys. 101, 8418–8429 (1994).
[CrossRef]

Locke, B. R.

A. A. Joshi, B. R. Locke, P. Arce, W. C. Finney, “Formation of hydoxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater. 41, 3–30 (1995).
[CrossRef]

A. K. Sharma, B. R. Locke, P. Arce, W. C. Finney, “A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions,” Hazard. Waste Hazard. Mater. 10, 209–220 (1993).
[CrossRef]

Lukes, P.

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

Maeda, M.

K. Muraoka, M. Maeda, Laser-Aided Diagnostics for Plasmas and Gases (Sangyo-tosho, Tokyo, 1995).

Meerts, W. L.

G. Berden, W. L. Meerts, M. Schmitt, K. Kleinermanns, “High resolution UV spectroscopy of phenol and the hydrogen bonded phenol–water cluster,” J. Chem. Phys. 104, 972–982 (1996).
[CrossRef]

Mikami, N.

A. Oikawa, H. Abe, N. Mikami, M. Ito, “Solvated phenol studied by supersonic jet spectroscopy,” J. Phys. Chem. 87, 5083–5086 (1983).
[CrossRef]

H. Abe, N. Mikami, M. Ito, “Fluorescence excitation spectra of hydrogen-bonded phenols in a supersonic free jet,” J. Phys. Chem. 86, 1768–1772 (1982).
[CrossRef]

Muraoka, K.

K. Muraoka, M. Maeda, Laser-Aided Diagnostics for Plasmas and Gases (Sangyo-tosho, Tokyo, 1995).

Ohgiyama, T.

M. Sato, T. Ohgiyama, J. S. Clements, “Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water,” IEEE Trans. Ind. Appl. 32, 106–112 (1996).
[CrossRef]

Oikawa, A.

A. Oikawa, H. Abe, N. Mikami, M. Ito, “Solvated phenol studied by supersonic jet spectroscopy,” J. Phys. Chem. 87, 5083–5086 (1983).
[CrossRef]

Pratt, D. W.

S. J. Humphrey, D. W. Pratt, “High resolution S1 ← S0 fluorescence excitation spectra of hydroquinone. Distinguishing the cis and trans rotamers by their nulear spin statistical weights,” J. Chem. Phys. 99, 5078–5086 (1993).
[CrossRef]

Rutgers, W. R.

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

W. F. L. M. Hoeben, E. M. van Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “Gas phase corona discharges for oxidation of phenol in an aqueous solution,” J. Phys. D 32, L133–177 (1999).
[CrossRef]

Sato, M.

B. Sun, M. Sato, J. S. Clements, “Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution,” J. Phys. D 32, 1908–1915 (1999).
[CrossRef]

B. Sun, M. Sato, J. S. Clements, “Optical study of active species produced by a pulsed streamer corona discharge in water,” J. Electrost. 39, 189–202 (1997).
[CrossRef]

M. Sato, T. Ohgiyama, J. S. Clements, “Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water,” IEEE Trans. Ind. Appl. 32, 106–112 (1996).
[CrossRef]

J. S. Clements, M. Sato, R. H. Davis, “Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water,” IEEE Trans. Ind. Appl. IA-23, 224–235 (1987).
[CrossRef]

Schmidt, J.

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

Schmitt, M.

G. Berden, W. L. Meerts, M. Schmitt, K. Kleinermanns, “High resolution UV spectroscopy of phenol and the hydrogen bonded phenol–water cluster,” J. Chem. Phys. 104, 972–982 (1996).
[CrossRef]

Sharma, A. K.

A. K. Sharma, B. R. Locke, P. Arce, W. C. Finney, “A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions,” Hazard. Waste Hazard. Mater. 10, 209–220 (1993).
[CrossRef]

Simek, M.

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

Sun, B.

B. Sun, M. Sato, J. S. Clements, “Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution,” J. Phys. D 32, 1908–1915 (1999).
[CrossRef]

B. Sun, M. Sato, J. S. Clements, “Optical study of active species produced by a pulsed streamer corona discharge in water,” J. Electrost. 39, 189–202 (1997).
[CrossRef]

Sunka, P.

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

van Veldhuizen, E. M.

W. F. L. M. Hoeben, E. M. van Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “Gas phase corona discharges for oxidation of phenol in an aqueous solution,” J. Phys. D 32, L133–177 (1999).
[CrossRef]

Veldhuizen, E. M. v.

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

Hazard. Waste Hazard. Mater. (1)

A. K. Sharma, B. R. Locke, P. Arce, W. C. Finney, “A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions,” Hazard. Waste Hazard. Mater. 10, 209–220 (1993).
[CrossRef]

IEEE Trans. Ind. Appl. (2)

J. S. Clements, M. Sato, R. H. Davis, “Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water,” IEEE Trans. Ind. Appl. IA-23, 224–235 (1987).
[CrossRef]

M. Sato, T. Ohgiyama, J. S. Clements, “Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water,” IEEE Trans. Ind. Appl. 32, 106–112 (1996).
[CrossRef]

J. Chem. Phys. (3)

G. Berden, W. L. Meerts, M. Schmitt, K. Kleinermanns, “High resolution UV spectroscopy of phenol and the hydrogen bonded phenol–water cluster,” J. Chem. Phys. 104, 972–982 (1996).
[CrossRef]

T. Burgi, S. Leutwyler, “O—H torsional vibration in the S0 and S1 states of catechol,” J. Chem. Phys. 101, 8418–8429 (1994).
[CrossRef]

S. J. Humphrey, D. W. Pratt, “High resolution S1 ← S0 fluorescence excitation spectra of hydroquinone. Distinguishing the cis and trans rotamers by their nulear spin statistical weights,” J. Chem. Phys. 99, 5078–5086 (1993).
[CrossRef]

J. Electrost. (1)

B. Sun, M. Sato, J. S. Clements, “Optical study of active species produced by a pulsed streamer corona discharge in water,” J. Electrost. 39, 189–202 (1997).
[CrossRef]

J. Hazard. Mater. (1)

A. A. Joshi, B. R. Locke, P. Arce, W. C. Finney, “Formation of hydoxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,” J. Hazard. Mater. 41, 3–30 (1995).
[CrossRef]

J. Phys. Chem. (2)

A. Oikawa, H. Abe, N. Mikami, M. Ito, “Solvated phenol studied by supersonic jet spectroscopy,” J. Phys. Chem. 87, 5083–5086 (1983).
[CrossRef]

H. Abe, N. Mikami, M. Ito, “Fluorescence excitation spectra of hydrogen-bonded phenols in a supersonic free jet,” J. Phys. Chem. 86, 1768–1772 (1982).
[CrossRef]

J. Phys. D (3)

D. Hayashi, W. F. L. M. Hoeben, G. Dooms, E. M. v. Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution,” J. Phys. D 33, 1484–1486 (2000).
[CrossRef]

B. Sun, M. Sato, J. S. Clements, “Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution,” J. Phys. D 32, 1908–1915 (1999).
[CrossRef]

W. F. L. M. Hoeben, E. M. van Veldhuizen, W. R. Rutgers, G. M. W. Kroesen, “Gas phase corona discharges for oxidation of phenol in an aqueous solution,” J. Phys. D 32, L133–177 (1999).
[CrossRef]

Plasma Sources Sci. Technol. (1)

P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, “Generation of chemically active species by electrical discharges in water,” Plasma Sources Sci. Technol. 8, 258–265 (1999).
[CrossRef]

Other (3)

K. Muraoka, M. Maeda, Laser-Aided Diagnostics for Plasmas and Gases (Sangyo-tosho, Tokyo, 1995).

W. F. L. M. Hoeben, Pulsed Corona-Induced Degradation of Organic Materials in Water (Eindhoven University of Technology, Eindhoven, The Netherlands, 2000).

A. Gilbert, J. Baggott, Essentials of Molecular Photochemistry (Blackwell, Oxford, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental apparatus: PC, computer.

Fig. 2
Fig. 2

LIF spectra taken from pure solutions (1.0 × 10-4 mol/L) of PH, DHB (RE, CA, HQ), BQ, and THB (PG, BT, PhG).

Fig. 3
Fig. 3

(a) Observed LIF spectrum (solid curve) from a solution mixture of PH and RE. We take the pure PH spectrum shown in Fig. 2 as a standard spectral component of PH with a 10-4 mol/L concentration. We fit the contour of the observed spectrum in the wavelength range 250–280 nm with that of the pure PH spectrum in the same wavelength range by multiplying a factor by its intensity. The spectral component that corresponds to PH (dotted curve, denoted PH) isolated from the observed spectrum is also plotted. The multiplication factor is 0.32. (b) The spectrum that results from subtraction of the PH component from the observed spectrum, together with pure RE spectrum. (The RE spectrum is offset above the horizontal axis.) The total concentration of the solution mixture is 1.0 × 10-4 mol/L, and the partial concentration of PH is 38%.

Fig. 4
Fig. 4

Schematic energy-level diagram (Jablonski diagram) of the energy states related to the LIF spectroscopy for a solution mixture of PH and an intermediate product Q. Levels 0, 1, and 2 correspond to the ground state of PH, the rovibrational ground state of the first electronic state, and a rovibrational excited state of the first electronic state, respectively. VI, vibrational cascade; IC, internal conversion; CQ, collisional quenching.

Fig. 5
Fig. 5

Dependence of the peak intensity of the PH component as a function of the partial PH concentration in a pure PH solution, a PH–RE mixture, and a PH–PG mixture. Curve A (dotted curve) fitted by Eq. (4) with k Q = 0 (where n Q = n 0) within an error of 5.6% is also shown. The absorption cross section σ20 for the pure PH solution is evaluated from the fitting parameter for σ20 L to be 1.0 × 10-16 cm2, provided that L = 10 cm.

Fig. 6
Fig. 6

Temporal variations of the LIF intensities of the components of PH and others (HB) during degradation as a function of the time after the discharge is started.

Fig. 7
Fig. 7

DS of the degraded solution at 100 min, together with a pure RE spectrum. (The RE spectrum is offset above the horizontal axis.)

Fig. 8
Fig. 8

Spectrum observed from the degraded solution at 150 min (OS), together with the pure PH spectrum.

Fig. 9
Fig. 9

Temporal variation of absolute PH concentration during degradation. The ambiguity that originates from collisional quenching with the intermediate products is represented by error bars that correspond to the differences among the maximum concentrations expected from Fig. 4.

Fig. 10
Fig. 10

Temporal variations of the PH and RE concentrations during corona-induced degradation measured by LIF and HPLC.16 The RE concentration measured by LIF is determined, provided that the LIF intensity of HB shown in Fig. 6 is responsible for RE. The quenching effect on the LIF intensity of HB is not taken into account because the quenching of the LIF intensity by existing intermediate products is not examined precisely in this case. For HPLC measurement, the initial concentration of the PH solution is 3.0 × 10-4 mol/L, whose value is three times higher than that for LIF.

Tables (1)

Tables Icon

Table 1 Peak Wavelengths, Full widths at Half-Maximum, and Peak Intensities of the Spectra of PH, DHB, and THB

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ=ρ0 exp-ρ20Ln0,
dn1dt=n2τ-A1n1-kQnQn1,
dn2dt=B20n0ρ-A2n2-n2τ-kQnQn2,
ILIF=ηA1n1=η B20ρ0 exp-σ20Ln0n0kQnQ+A1kQnQτ+1+A2τ,

Metrics