Abstract

Nonresonant laser-induced thermal acoustics is used with heterodyne detection to measure temperature (285–295 K) and a single component of velocity (20–150 m/s) in an atmospheric pressure, subsonic, unseeded air jet. Good agreement is found with Pitot-tube measurements of velocity (0.2% at 150 m/s and 2% at 20 m/s) and the isentropic expansion model for temperature (0.3%).

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, R. N. Zare, “Laser-induced thermal grating effects in flames,” Opt. Lett. 19, 1681–1683 (1994).
    [CrossRef] [PubMed]
  2. E. B. Cummings, “Laser-induced thermal acoustics: simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
    [CrossRef] [PubMed]
  3. M. A. Buntine, D. W. Chandler, C. C. Hayden, “Detection of vibrational overtone excitation in water via laser-induced grating spectroscopy,” J. Chem. Phys. 102, 2718–2726 (1995).
    [CrossRef]
  4. E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995).
    [CrossRef] [PubMed]
  5. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
    [CrossRef]
  6. M. S. Brown, W. L. Roberts, “Single point thermometry in high-pressure sooting, premixed combustion environments,” J. Propulsion Power 15, 119–127 (1999).
    [CrossRef]
  7. R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
    [CrossRef]
  8. R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range 300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
    [CrossRef] [PubMed]
  9. S. Schlamp, E. B. Cummings, T. H. Sobota, “Laser-induced thermal-acoustic velocimetry with heterodyne detection,” Opt. Lett. 25, 224–226 (2000).
    [CrossRef]
  10. D. J. W. Walker, R. B. Williams, P. Ewart, “Thermal grating velocimetry,” Opt. Lett. 23, 1316–1318 (1998).
    [CrossRef]
  11. A. A. Maznev, K. A. Nelson, J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23, 1319–1321 (1998).
    [CrossRef]

2000 (2)

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range 300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

S. Schlamp, E. B. Cummings, T. H. Sobota, “Laser-induced thermal-acoustic velocimetry with heterodyne detection,” Opt. Lett. 25, 224–226 (2000).
[CrossRef]

1999 (2)

M. S. Brown, W. L. Roberts, “Single point thermometry in high-pressure sooting, premixed combustion environments,” J. Propulsion Power 15, 119–127 (1999).
[CrossRef]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

1998 (3)

1995 (2)

M. A. Buntine, D. W. Chandler, C. C. Hayden, “Detection of vibrational overtone excitation in water via laser-induced grating spectroscopy,” J. Chem. Phys. 102, 2718–2726 (1995).
[CrossRef]

E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995).
[CrossRef] [PubMed]

1994 (2)

Balla, R. J.

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range 300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

Brown, M. S.

Buntine, M. A.

M. A. Buntine, D. W. Chandler, C. C. Hayden, “Detection of vibrational overtone excitation in water via laser-induced grating spectroscopy,” J. Chem. Phys. 102, 2718–2726 (1995).
[CrossRef]

Chandler, D. W.

M. A. Buntine, D. W. Chandler, C. C. Hayden, “Detection of vibrational overtone excitation in water via laser-induced grating spectroscopy,” J. Chem. Phys. 102, 2718–2726 (1995).
[CrossRef]

Cummings, E. B.

DeBarber, P. A.

Ewart, P.

Forsman, J. W.

Hart, R. C.

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range 300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

Hayden, C. C.

M. A. Buntine, D. W. Chandler, C. C. Hayden, “Detection of vibrational overtone excitation in water via laser-induced grating spectroscopy,” J. Chem. Phys. 102, 2718–2726 (1995).
[CrossRef]

Hemmerling, B.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Herring, G. C.

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range 300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999).
[CrossRef]

Hornung, H. G.

Hubschmid, W.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Maznev, A. A.

Nelson, K. A.

Paul, P. H.

Rahn, L. A.

Roberts, W. L.

M. S. Brown, W. L. Roberts, “Single point thermometry in high-pressure sooting, premixed combustion environments,” J. Propulsion Power 15, 119–127 (1999).
[CrossRef]

Rogers, J. A.

Schlamp, S.

Sobota, T. H.

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Walker, D. J. W.

Williams, R. B.

Williams, S.

Zare, R. N.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

J. Acoust. Soc. Am. (1)

R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range 300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

M. A. Buntine, D. W. Chandler, C. C. Hayden, “Detection of vibrational overtone excitation in water via laser-induced grating spectroscopy,” J. Chem. Phys. 102, 2718–2726 (1995).
[CrossRef]

J. Propulsion Power (1)

M. S. Brown, W. L. Roberts, “Single point thermometry in high-pressure sooting, premixed combustion environments,” J. Propulsion Power 15, 119–127 (1999).
[CrossRef]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the setup used to make temperature and heterodyned velocity measurements with LITA.

Fig. 2
Fig. 2

(a) Upper trace is a single-laser-shot heterodyned LITA example of the temporal profile, showing the data (noisy curve) and a fit to the data (smooth curve). The lower trace shows the difference between the fit and the data. (b) Corresponding spectral transform of the data is shown. Velocity, Mach number, and temperature are obtained from the frequencies of the three peaks.

Fig. 3
Fig. 3

(a) LITA velocity and (b) the difference between LITA and Pitot tube vs. the Pitot-tube velocity. Pitot-tube data are acquired simultaneously with the LITA data. Each velocity and velocity difference point is the average of ∼50 laser shots.

Fig. 4
Fig. 4

(a) LITA temperature measurements (solid circles) obtained from the same data set as used in Fig. 3, plotted as a function of Pitot-tube velocity, and compared to an isentropic-flow calculation (open diamonds). (b) The differences between the LITA data and the calculation.

Metrics