Abstract

Vertical concentration profiles of atmospheric SO2 of the order of parts in 109 (ppb) were measured by a multiwavelength differential absorption lidar system. The error that was due to O3 and aerosols was successfully reduced by a three-wavelength dual differential absorption lidar (DIAL), and a SO2 concentration of 1.2 ppb for 2400–3000-m altitude was obtained with 300-m range resolution. The measurement error in dual DIAL was estimated to be <1.1 ppb when several factors were considered. The influence of O3 on SO2 measurement error was experimentally evaluated from simultaneous measurements of atmospheric SO2 and O3 by two conventional DIAL pairs, each using two wavelengths.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water Air Soil Pollut. 85, 2015–2020 (1995).
    [CrossRef]
  2. Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water Air Soil Pollut. 85, 1927–1932 (1995).
    [CrossRef]
  3. K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg, “Lidar system applied in atmospheric pollution monitoring,” Appl. Opt. 18, 2998–3003 (1979).
    [CrossRef] [PubMed]
  4. A. Egeback, K. Fredriksson, H. Hertz, “DIAL techniques for the control of sulfur dioxide emissions,” Appl. Opt. 23, 722–729 (1984).
    [CrossRef] [PubMed]
  5. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
    [CrossRef] [PubMed]
  6. M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
    [CrossRef]
  7. H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
    [CrossRef]
  8. T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
    [CrossRef]
  9. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  10. Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
    [CrossRef]
  11. D. J. Brassington, “Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774–3779 (1981).
    [CrossRef] [PubMed]
  12. D. J. Brassington, R. C. Felton, B. W. Jolliffe, B. R. Marx, J. T. M. Moncrieff, W. R. C. Rowley, P. T. Woods, “Errors in spectroscopic measurements of SO2 due to nonexponential absorption of laser radiation, with application to the remote monitoring of atmospheric pollutants,” Appl. Opt. 23, 469–475 (1984).
    [CrossRef]

1999 (1)

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

1996 (1)

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

1995 (2)

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water Air Soil Pollut. 85, 2015–2020 (1995).
[CrossRef]

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water Air Soil Pollut. 85, 1927–1932 (1995).
[CrossRef]

1994 (1)

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

1990 (1)

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

1987 (1)

1985 (1)

1984 (2)

1981 (1)

1979 (1)

Beniston, M.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Beniston-Rebetez, M.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Brassington, D. J.

Browell, E. V.

Cioni, R.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

Edner, H.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
[CrossRef] [PubMed]

Egeback, A.

Felton, R. C.

Ferrara, R.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

Fredriksson, K.

Fujii, T.

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Fujita, S.

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water Air Soil Pollut. 85, 1927–1932 (1995).
[CrossRef]

Fukuchi, T.

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Galle, B.

Gong, Z.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Goto, N.

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Hayami, H.

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water Air Soil Pollut. 85, 2015–2020 (1995).
[CrossRef]

Hertz, H.

Hu, H.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Ichikawa, Y.

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water Air Soil Pollut. 85, 2015–2020 (1995).
[CrossRef]

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water Air Soil Pollut. 85, 1927–1932 (1995).
[CrossRef]

Ismail, S.

Jolliffe, B. W.

Kolsch, H. J.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Marx, B. R.

Moncrieff, J. T. M.

Nemoto, K.

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Nystrom, K.

Raco, B.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

Ragnarson, P.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

Rairoux, P.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Rowley, W. R. C.

Shipley, S. T.

Sunesson, A.

Svanberg, S.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg, “Lidar system applied in atmospheric pollution monitoring,” Appl. Opt. 18, 2998–3003 (1979).
[CrossRef] [PubMed]

Taddeucci, G.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

Uneus, L.

Wallinder, E.

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

Wang, Z.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Wendt, W.

Wolf, J. P.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Woods, P. T.

Woste, L.

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

Zhou, J.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B 62, 143–147 (1996).
[CrossRef]

J. Geophys. Res. (2)

M. Beniston, J. P. Wolf, M. Beniston-Rebetez, H. J. Kolsch, P. Rairoux, L. Woste, “Use of lidar measurements and numerical model in air pollution research,” J. Geophys. Res. 95, 9879–9894 (1990).
[CrossRef]

H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy,” J. Geophys. Res. 99, 18,827–18,838 (1994).
[CrossRef]

Opt. Eng. (1)

T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, “Error analysis of SO2 measurement by multiwavelength differential absorption lidar,” Opt. Eng. 38, 141–145 (1999).
[CrossRef]

Water Air Soil Pollut. (2)

H. Hayami, Y. Ichikawa, “Development of hybrid LRT model to estimate sulfur deposition in Japan,” Water Air Soil Pollut. 85, 2015–2020 (1995).
[CrossRef]

Y. Ichikawa, S. Fujita, “An analysis of wet deposition of sulfate using a trajectory model for East Asia,” Water Air Soil Pollut. 85, 1927–1932 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Wavelengths used in three-wavelength dual DIAL for SO2, and absorption cross sections of SO2 and O3.

Fig. 2
Fig. 2

Block diagram of the multiwavelength DIAL system: PMT, photomultiplier tube.

Fig. 3
Fig. 3

Absorption cross sections of SO2 and O3, and wavelengths used in SO2 measurement.

Fig. 4
Fig. 4

Null and DIAL profiles of O3 for 2500–3500-m altitude: *, null profile measured before SO2 measurements; ×, DIAL profile measured before SO2 measurements; ○, DIAL profile measured after SO2 measurements.

Fig. 5
Fig. 5

DIAL and null measurement results of SO2 at 3300-m altitude. λ a is fixed at 299.35 nm and treated as the off wavelength: (a) S value versus λ b and (b) S value versus λ b after the O3 contribution calculated from O3 measurement results has been subtracted. ○, Measurements when λ b was scanned from 299.35 to 301.10 nm; ×, measurements when λ b was scanned from 301.10 to 299.35 nm.

Fig. 6
Fig. 6

SO2 DIAL profiles for the wavelength pair 299.35–300.05 nm after the effect of O3 has been subtracted. The O3 concentration was obtained from DIAL measurements immediately before and after SO2 measurement. ○, Measurement at λ b = 300.05 nm when λ b was scanned from 299.35 to 301.10 nm; ×, measurement at λ b = 300.05 nm when λ b was scanned from 301.10 to 299.35 nm.

Fig. 7
Fig. 7

Vertical SO2 concentration profiles measured by three-wavelength dual-DIAL, DIAL 1, and DIAL 2. ○, DIAL measurements with dye laser 1; ×, DIAL measurements with dye laser 2; *, dual-DIAL measurements with dye lasers 1 and 2.

Tables (2)

Tables Icon

Table 1 Specifications of the Multiwavelength DIAL System

Tables Icon

Table 2 Averaged errors of SO2 Concentration Measurement for 2400–3000-m Altitude

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n=12ΔRΔσ0i=1m ei lnNR, λiNR+ΔR, λi-i=1m ei lnβR, λiβR+ΔR, λi-ΔαxΔσ0,
Δσ0=i=1m eiσ0λi,  Δαx=i=1m eiαxλi.
nΔσ0  12ΔRi=1m ei lnβR, λiβR+ΔR, λi
nΔσ0  12ΔRi=1m ei lnβR, λiβR+ΔR, λi
i=1m ei lnβR, λiβR+ΔR, λi.
Si=1m ei lnNR, λiNR+ΔR, λi=2ΔRΔσ0n+Δαx,
i=1m ei lnβR, λiβR+ΔR, λi
δn=δnxsec2+δnstat2+δnoth2+δninst21/2,
i=1m ei lnβR, λiβR+ΔR, λi

Metrics