Abstract

We describe the final inversion algorithm developed to process solar occultation data measured in 1992–1993 by the Occultation Radiometer (ORA) spaceborne experiment. First we develop a new method to improve the ORA total extinction altitude profiles retrieved with the previously described Natural Orthogonal Polynomial Expansion (NOPE) method. Using these improved profiles, we perform spectral inversion and obtain altitude density profiles for O3 and NO2 and extinction profiles for the aerosols. Validation of number density profiles between the Stratospheric Aerosol and Gas Experiment II (SAGE II) and the ORA shows satisfactory agreement.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
    [CrossRef]
  2. W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).
  3. L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).
  4. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 18, 609–624 (1976).
    [CrossRef]
  5. D. Fussen, E. Arijs, D. Nevejans, F. Leclere, “Tomography of the Earth’s atmosphere by the space-borne ORA radiometer: spatial inversion algorithm,” J. Geophys. Res. 102, 4357–4365 (1997).
    [CrossRef]
  6. D. Fussen, E. Arijs, D. Nevejans, F. V. Hellemont, C. Brogniez, J. Lenoble, “Validation of the ORA spatial inversion algorithm with respect to the Stratospheric Aerosol and Gas Experiment II data,” Appl. Opt. 37, 3121–3127 (1998).
    [CrossRef]
  7. C. D. Rodgers, “Characterization and error analysis of profiles retrieved from remote sounding measurements,” J. Geophys. Res. 95, 5587–5595 (1990).
    [CrossRef]
  8. A. Tarentola, Inverse Problem Theory (Elsevier, Amsterdam, 1987).
  9. J. Lenoble, “Presentation of the European correlative experiment program for SAGE II,” J. Geophys. Res. 94, 8395–8398 (1989).
    [CrossRef]
  10. C. Brogniez, J. Lenoble, “Analysis of 5-year aerosol data from the stratospheric aerosol and gas experiment,” J. Geophys. Res. 96, 15,479–15,497 (1991).
    [CrossRef]

1998 (1)

1997 (1)

D. Fussen, E. Arijs, D. Nevejans, F. Leclere, “Tomography of the Earth’s atmosphere by the space-borne ORA radiometer: spatial inversion algorithm,” J. Geophys. Res. 102, 4357–4365 (1997).
[CrossRef]

1995 (1)

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

1991 (1)

C. Brogniez, J. Lenoble, “Analysis of 5-year aerosol data from the stratospheric aerosol and gas experiment,” J. Geophys. Res. 96, 15,479–15,497 (1991).
[CrossRef]

1990 (1)

C. D. Rodgers, “Characterization and error analysis of profiles retrieved from remote sounding measurements,” J. Geophys. Res. 95, 5587–5595 (1990).
[CrossRef]

1989 (2)

J. Lenoble, “Presentation of the European correlative experiment program for SAGE II,” J. Geophys. Res. 94, 8395–8398 (1989).
[CrossRef]

W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).

1985 (1)

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

1976 (1)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 18, 609–624 (1976).
[CrossRef]

Arijs, E.

D. Fussen, E. Arijs, D. Nevejans, F. V. Hellemont, C. Brogniez, J. Lenoble, “Validation of the ORA spatial inversion algorithm with respect to the Stratospheric Aerosol and Gas Experiment II data,” Appl. Opt. 37, 3121–3127 (1998).
[CrossRef]

D. Fussen, E. Arijs, D. Nevejans, F. Leclere, “Tomography of the Earth’s atmosphere by the space-borne ORA radiometer: spatial inversion algorithm,” J. Geophys. Res. 102, 4357–4365 (1997).
[CrossRef]

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Brogniez, C.

D. Fussen, E. Arijs, D. Nevejans, F. V. Hellemont, C. Brogniez, J. Lenoble, “Validation of the ORA spatial inversion algorithm with respect to the Stratospheric Aerosol and Gas Experiment II data,” Appl. Opt. 37, 3121–3127 (1998).
[CrossRef]

C. Brogniez, J. Lenoble, “Analysis of 5-year aerosol data from the stratospheric aerosol and gas experiment,” J. Geophys. Res. 96, 15,479–15,497 (1991).
[CrossRef]

W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).

Burchell, I.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Calcutt, S. B.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Chu, W. P.

W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).

Frederick, P.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Fussen, D.

D. Fussen, E. Arijs, D. Nevejans, F. V. Hellemont, C. Brogniez, J. Lenoble, “Validation of the ORA spatial inversion algorithm with respect to the Stratospheric Aerosol and Gas Experiment II data,” Appl. Opt. 37, 3121–3127 (1998).
[CrossRef]

D. Fussen, E. Arijs, D. Nevejans, F. Leclere, “Tomography of the Earth’s atmosphere by the space-borne ORA radiometer: spatial inversion algorithm,” J. Geophys. Res. 102, 4357–4365 (1997).
[CrossRef]

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Guy, J. H.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Hellemont, F. V.

Hepplewhite, C. L.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Leclere, F.

D. Fussen, E. Arijs, D. Nevejans, F. Leclere, “Tomography of the Earth’s atmosphere by the space-borne ORA radiometer: spatial inversion algorithm,” J. Geophys. Res. 102, 4357–4365 (1997).
[CrossRef]

Lenoble, J.

D. Fussen, E. Arijs, D. Nevejans, F. V. Hellemont, C. Brogniez, J. Lenoble, “Validation of the ORA spatial inversion algorithm with respect to the Stratospheric Aerosol and Gas Experiment II data,” Appl. Opt. 37, 3121–3127 (1998).
[CrossRef]

C. Brogniez, J. Lenoble, “Analysis of 5-year aerosol data from the stratospheric aerosol and gas experiment,” J. Geophys. Res. 96, 15,479–15,497 (1991).
[CrossRef]

J. Lenoble, “Presentation of the European correlative experiment program for SAGE II,” J. Geophys. Res. 94, 8395–8398 (1989).
[CrossRef]

W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).

Mauldin, L. E.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

McCormick, M. P.

W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Nevejans, D.

D. Fussen, E. Arijs, D. Nevejans, F. V. Hellemont, C. Brogniez, J. Lenoble, “Validation of the ORA spatial inversion algorithm with respect to the Stratospheric Aerosol and Gas Experiment II data,” Appl. Opt. 37, 3121–3127 (1998).
[CrossRef]

D. Fussen, E. Arijs, D. Nevejans, F. Leclere, “Tomography of the Earth’s atmosphere by the space-borne ORA radiometer: spatial inversion algorithm,” J. Geophys. Res. 102, 4357–4365 (1997).
[CrossRef]

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Pritchard, T. M.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Pruvost, P.

W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).

Rodgers, C. D.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

C. D. Rodgers, “Characterization and error analysis of profiles retrieved from remote sounding measurements,” J. Geophys. Res. 95, 5587–5595 (1990).
[CrossRef]

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 18, 609–624 (1976).
[CrossRef]

Tarentola, A.

A. Tarentola, Inverse Problem Theory (Elsevier, Amsterdam, 1987).

Taylor, F. W.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Van Ransbeeck, E.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Vaughn, W. R.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Werrett, S. T.

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Zaun, N. H.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Adv. Space Res. (1)

E. Arijs, D. Nevejans, D. Fussen, P. Frederick, E. Van Ransbeeck, F. W. Taylor, S. B. Calcutt, S. T. Werrett, C. L. Hepplewhite, T. M. Pritchard, I. Burchell, C. D. Rodgers, “The ORA ocultation radiometer on EURECA: instrument description and preliminary results,” Adv. Space Res. 16, 33–36 (1995).
[CrossRef]

Appl. Opt. (1)

J. Geophys. Res. (5)

C. D. Rodgers, “Characterization and error analysis of profiles retrieved from remote sounding measurements,” J. Geophys. Res. 95, 5587–5595 (1990).
[CrossRef]

J. Lenoble, “Presentation of the European correlative experiment program for SAGE II,” J. Geophys. Res. 94, 8395–8398 (1989).
[CrossRef]

C. Brogniez, J. Lenoble, “Analysis of 5-year aerosol data from the stratospheric aerosol and gas experiment,” J. Geophys. Res. 96, 15,479–15,497 (1991).
[CrossRef]

W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, P. Pruvost, “SAGE II inversion algorithm,” J. Geophys. Res. 94, 8839–8351 (1989).

D. Fussen, E. Arijs, D. Nevejans, F. Leclere, “Tomography of the Earth’s atmosphere by the space-borne ORA radiometer: spatial inversion algorithm,” J. Geophys. Res. 102, 4357–4365 (1997).
[CrossRef]

Opt. Eng. (1)

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Rev. Geophys. Space Phys. (1)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 18, 609–624 (1976).
[CrossRef]

Other (1)

A. Tarentola, Inverse Problem Theory (Elsevier, Amsterdam, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured transmittance (inset) is a smooth function of the tangent altitude. At satellite position 2, the signal is influenced mainly by the atmospheric layers that define the Sun’s apparent size (z = h min to z = h max). Note that we use h for the tangent altitude, which varies during the occultation, and z for the altitude at which the profile is computed. Reciprocally, the value of the extinction coefficient at z = h is strongly determined by the value of the transmittance recorded between satellite positions 1 and 3.

Fig. 2
Fig. 2

Top, NOPE total extinction (circles) and corrected DM profiles (solid curves). Dashed curves, Rayleigh extinction. Bottom, Measured transmission (solid curves) and modeled NOPE transmission (circles).

Fig. 3
Fig. 3

Left, centroid (z *) of the averaging kernel; right, vertical resolution δ(z).

Fig. 4
Fig. 4

Top, comparison of means of 25 coincident ORA (asterisks) and SAGE (six-pointed stars) profiles for O3 and NO2. Bottom, Means of relative differences.

Fig. 5
Fig. 5

Comparison of ORA (asterisks) and SAGE (six-pointed stars) aerosol extinctions at six wavelength channels.

Fig. 6
Fig. 6

Relative difference between ORA and SAGE aerosol extinction profiles for the six wavelength channels.

Fig. 7
Fig. 7

Typical correlation plots for the three constituents. Results for the occultation event of 10 October 1992 at longitude 13.5° and latitude 27.1°. Interpretation example (top): The point at coordinates (30 km, 20 km) represents the correlation of the retrieved ozone density at 30 km with the NO2 density at 20 km.

Tables (1)

Tables Icon

Table 1 Major Light Absorbers for the ORA Channels

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

βz=β0zi=0n αiPiz,
βz=-lnyS+βminRz,
y=yz=tanhζz-1/2+1/2,
ζz=hminzhmaxz fh; zThdh,
βminRz=0.9β0Rz  z30 km=0.9-0.01z-30β0Rz  30 km<z50 km,
xh=h-hminzΔh-1Δhhmaxz-hminz2.
ζz=-11 fhx; zThxdx.
fx, z=j=010 ajzcosj arccosx.
βz-β0z=Φβtz-β0z.
βz-β0z=0 ϕzβtz-β0zdz,
ϕz=γδπexp-z-z*δ2,
R6NR6O100000R8NR8O0100001R2O001000R1NR1O000100R5N1000010R3NR3O000001β2Nβ5Oβ6Aβ8Aβ2Aβ1Aβ5Aβ3A=β6β8β2β1β5β3,
Ai·xi=βi,
βjAλ=c0+c1λj-λ3+c2λj-λ32,
B2Nβ5Oβ6Aβ8Aβ2AB1Aβ5Aβ3A=1000001000001λ6-λ3λ6-λ32001λ8-λ3λ8-λ32001λ2-λ3λ2-λ32001λ1-λ3λ1-λ32001λ5-λ3λ5-λ3200100β2Nβ5Oc0c1c2
xi=Kyi,
A1sA2sA26s·x1x2x26xs=β1β2β26,
s=λ6-4λ8-4λ2-4λ1-4λ5-4λ3-4T.
Atxt=Bt.
σ2zi1, zi2=σ2zi1σ2zi21/2exp-zi1-zi2L2,
Kt=KK1
AtKtyt=Btyt=βt,
Cz=KtTKt-1KtTCvKtKtTKt-1,
yt=KtTKt-1KtTx˜t.
BtTCd-1Bt+Cz-1yt-y˜t=BtTCd-1Bt-Bty˜t,
yt=y˜t+BtTCd-1Bt+Cz-1-1BtTCd-1βt-Bty˜t
Cp=BtTCd-1Bt+Cz-1-1.
2= pi-p¯2n+ i2n,

Metrics