Abstract

The optical processes involved in laser trapping and optical manipulation are explored theoretically and experimentally as a means of activating a micrometer-size gear structure. We modeled the structure by using an enhanced ray-optics technique, and results indicate that the torque present on the gear can induce the gear to rotate about the gear-arm plane center with light as the driving energy source. We confirmed these findings experimentally by using gears manufactured with conventional semiconductor techniques and from a layer of polyimide. It is expected that such a simple gear design activated by use of light could lead to an entire new class of micro-optical–electromechanical systems.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
    [CrossRef] [PubMed]
  4. E. Fallman, O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107–2113 (1997).
    [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  6. S. C. Kuo, M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 117–118 (1992).
  7. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Opt. Photon. News41–46 (May1999).
  8. S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28, 1–16 (1996).
    [CrossRef]
  9. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
    [CrossRef] [PubMed]
  10. A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
    [CrossRef]
  11. S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
    [CrossRef] [PubMed]
  12. K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of the reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
    [CrossRef] [PubMed]
  13. R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B 12, 1680–1685 (1995).
    [CrossRef]
  14. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
    [CrossRef]
  15. R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6430 (1998).
    [CrossRef]
  16. R. C. Gauthier, M. Ashman, A. Frangioudakis, H. Mende, S. Ma, “Radiation-pressure-based cylindrically shaped microactuator capable of smooth, continuous, reversible, and stepped rotation,” Appl. Opt. 38, 4850–4860 (1999).
    [CrossRef]
  17. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
    [CrossRef]
  18. R. C. Gauthier, M. Ashman, C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861–4869 (1999).
    [CrossRef]
  19. K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” J. Biophys. 63, 784–793 (1992).
    [CrossRef]
  20. L. P. Ghislain, W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993).
    [CrossRef] [PubMed]

1999 (3)

1998 (2)

R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6430 (1998).
[CrossRef]

A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
[CrossRef]

1997 (3)

1996 (3)

1995 (1)

1993 (1)

1992 (2)

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” J. Biophys. 63, 784–793 (1992).
[CrossRef]

S. C. Kuo, M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 117–118 (1992).

1991 (1)

S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

1976 (1)

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Opt. Photon. News41–46 (May1999).

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ashman, M.

Axner, O.

Bar-Ziv, R.

A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” J. Biophys. 63, 784–793 (1992).
[CrossRef]

Branton, D.

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” J. Biophys. 63, 784–793 (1992).
[CrossRef]

Chu, S.

de Grooth, B. G.

Doornbos, R. M. P.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

Fallman, E.

Frangioudakis, A.

Gauthier, R. C.

Ghislain, L. P.

Gouesbet, G.

Gréhan, G.

Greve, J.

Grover, C. P.

Hoekstra, A. G.

Imbert, C.

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

Inaba, H.

S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28, 1–16 (1996).
[CrossRef]

Kuo, S. C.

S. C. Kuo, M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 117–118 (1992).

Ma, S.

Meller, A.

A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
[CrossRef]

Mende, H.

Ren, K. F.

Roosen, G.

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

Safran, S. A.

A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
[CrossRef]

Sato, S.

S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28, 1–16 (1996).
[CrossRef]

Schaeffer, M.

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” J. Biophys. 63, 784–793 (1992).
[CrossRef]

Sheetz, M. P.

S. C. Kuo, M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 117–118 (1992).

Sloot, P. M. A.

Stavans, J.

A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
[CrossRef]

Svoboda, K.

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” J. Biophys. 63, 784–793 (1992).
[CrossRef]

Tlusty, T.

A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
[CrossRef]

Wallace, S.

Webb, W. W.

Appl. Opt. (6)

J. Biophys. (2)

K. Svoboda, C. F. Schmidt, D. Branton, S. M. Block, “Conformation and elasticity of the isolated red blood cell membrane skeleton,” J. Biophys. 63, 784–793 (1992).
[CrossRef]

A. Meller, R. Bar-Ziv, T. Tlusty, J. Stavans, S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” J. Biophys. 74, 1541–1548 (1998).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (2)

Opt. Photon. News (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Opt. Photon. News41–46 (May1999).

Opt. Quantum Electron. (1)

S. Sato, H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28, 1–16 (1996).
[CrossRef]

Phys. Lett. A (1)

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Science (1)

S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
[CrossRef] [PubMed]

Trends Cell Biol. (1)

S. C. Kuo, M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 117–118 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Design of the 3-, 4-, 5-, 6-, and 8-arm microgear structures examined. Arm length L and arm width W are measured experimentally and depend on the manufacturing process. The gears are 3 µm thick and 20 µm across.

Fig. 2
Fig. 2

Eight-arm microgear located between the dual focused laser beams. Gravity is the negative Z direction.

Fig. 3
Fig. 3

Predicted behavior of the enhanced ray-optics model of the microgear subjected to displaced dual counterpropagating laser beams. The gear rotates onto its edge and into the two beams to present the maximum gear volume to the beams. The gear then begins to rotate about the Y-axis pivot in a manner similar to conventional gears.

Fig. 4
Fig. 4

Normalized torque (pN µm/mW) versus rotation angle of the 8-arm microgear. Only one beam is incident on the gear and offset by 3.5 µm from the pivot center along the x direction. The negative value of the torque indicates a counterclockwise rotation of the gear.

Fig. 5
Fig. 5

Microgears after the plasma etch process. The microgears rest on an aluminum surface and are capped with aluminum. We released the polyimide gears into the laser trap environment by etching the aluminum layers.

Fig. 6
Fig. 6

Experimental configuration of the design of the dual-beam counterpropagating laser trap. System macrocomponents include two laser diode units and video imaging systems.

Fig. 7
Fig. 7

Selected video snapshots showing the 3-, 4-, 5-, 6-, and 8-arm microgear structures available for laser trap analysis. Images were taken with the top–down imaging system.

Fig. 8
Fig. 8

Translation of the microgear in the plane of the sample chamber base. We accomplished translation by displacing the sample chamber and holding the gears in place by using the laser trap of the dual beams.

Fig. 9
Fig. 9

Rotation of the gear onto its edge and in alignment with the dual beams of the laser trap. The enhanced ray-optics model as shown in Figs. 3(a) and 3(b) predicts this behavior.

Fig. 10
Fig. 10

Orientation of the microgear’s rotation plane with respect to the dual beams of the laser trap. The enhanced ray-optics model as shown in Figs. 3(b) and 3(c) predicts this behavior.

Fig. 11
Fig. 11

Snapshots of the microgear in rotation about its central region. The gear rotates as a conventional gear by using only a light-generated force to hold it in place and a light-generated torque to set it in rotation.

Metrics