Abstract

The suitability for low-coherence interferometry of a high-power, semiconductor laser line source operated at a forward bias current below threshold is demonstrated. Measurements of the important characteristics of the source are presented. For example, the source produces an output power of 1.3 mW and a spatially uniform coherence length of 16 µm at a bias current of 86% of threshold (250 mA) at 20 °C. The usefulness of the source is verified by measurement of the line profile of a contact lens.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996).
  2. P. de Grout, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
    [CrossRef]
  3. S. R. Chinn, E. A. Swanson, “Blindness limitation in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
    [CrossRef]
  4. D. Botez, D. R. Scifres, Diode Laser Arrays (Cambridge University, Cambridge, England, 1994).
    [CrossRef]
  5. R. A. Griffin, D. A. Jackson, D. D. Sampson, “Coherence and noise properties of gain-switched Fabry–Perot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 569–576 (1995).
    [CrossRef]

1995 (2)

P. de Grout, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

R. A. Griffin, D. A. Jackson, D. D. Sampson, “Coherence and noise properties of gain-switched Fabry–Perot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 569–576 (1995).
[CrossRef]

1993 (1)

S. R. Chinn, E. A. Swanson, “Blindness limitation in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

Botez, D.

D. Botez, D. R. Scifres, Diode Laser Arrays (Cambridge University, Cambridge, England, 1994).
[CrossRef]

Chinn, S. R.

S. R. Chinn, E. A. Swanson, “Blindness limitation in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

Corle, T. R.

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996).

de Grout, P.

P. de Grout, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Deck, L.

P. de Grout, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Griffin, R. A.

R. A. Griffin, D. A. Jackson, D. D. Sampson, “Coherence and noise properties of gain-switched Fabry–Perot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 569–576 (1995).
[CrossRef]

Jackson, D. A.

R. A. Griffin, D. A. Jackson, D. D. Sampson, “Coherence and noise properties of gain-switched Fabry–Perot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 569–576 (1995).
[CrossRef]

Kino, G. S.

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996).

Sampson, D. D.

R. A. Griffin, D. A. Jackson, D. D. Sampson, “Coherence and noise properties of gain-switched Fabry–Perot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 569–576 (1995).
[CrossRef]

Scifres, D. R.

D. Botez, D. R. Scifres, Diode Laser Arrays (Cambridge University, Cambridge, England, 1994).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, “Blindness limitation in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

Electron. Lett. (1)

S. R. Chinn, E. A. Swanson, “Blindness limitation in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. A. Griffin, D. A. Jackson, D. D. Sampson, “Coherence and noise properties of gain-switched Fabry–Perot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 569–576 (1995).
[CrossRef]

J. Mod. Opt. (1)

P. de Grout, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Other (2)

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996).

D. Botez, D. R. Scifres, Diode Laser Arrays (Cambridge University, Cambridge, England, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

(a) Coherence length and optical power versus laser bias current: ◇ ——, top; □ –––, middle top; △ -----, middle; × —–, middle bottom; ○ ····, bottom. (b) Coherence functions at the same currents as in (a); from top to bottom, 270, 250, 225, 200, 100 mA.

Fig. 3
Fig. 3

Optical power and visibility versus distance along the line.

Fig. 4
Fig. 4

Line profiles of a plane mirror and a contact lens.

Metrics