Abstract

The statistical properties of stellar scintillations are discussed with special attention to correcting the atmospheric transmittance data for scintillations in measurements made with the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument. Both anisotropic and isotropic turbulent inhomogeneities are taken into account. Calculated rms scintillation reaches several percent for altitudes of 30–35 km, an amplitude comparable with the expected absorbing features. Estimates of cross-correlation functions show that the GOMOS correction procedure can be applied efficiently for scintillations caused by anisotropic inhomogeneities, in contrast to the isotropic case. Some recommendations are given for conditions of observations with which to make better corrections of scintillations.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Dalaudier, V. Kan, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction,” Appl. Opt. 40, 866–877 (2001).
    [CrossRef]
  2. V. I. Tatarskii, L. N. Zhukova, “On chromatic stellar scintillation,” Dokl. Akad. Nauk SSSR 124, 567–569 (1959).
  3. B. S. Haugstad, “Effects of inhomogeneous background on radiation propagating through turbulent planetary atmospheres,” Radio Sci. 13, 435–440 (1978).
    [CrossRef]
  4. D. P. Hinson, “Strong scintillation during atmospheric occultations: theoretical intensity spectra,” Radio Sci. 21, 257–270 (1986).
    [CrossRef]
  5. W. B. Hubbard, J. R. Jokipii, B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: a wave-optical theory including a finite scale height,” Icarus 34, 374–395 (1978).
    [CrossRef]
  6. R. Woo, A. Ishimaru, F.-Ch. Yang, “Radio scintillations during occultations by turbulent planetary atmospheres,” Radio Sci. 15, 695–703 (1980).
    [CrossRef]
  7. J. R. Jokipii, W. B. Hubbard, “Stellar scintillations by turbulent planetary atmospheres: the beta Scorpii events,” Icarus 30, 537–550 (1977).
    [CrossRef]
  8. W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
    [CrossRef]
  9. A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).
  10. G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).
  11. J. F. Carbary, E. H. Darlington, T. J. Harris, P. J. McEvaddy, M. J. Mayr, K. Peacock, C. I. Meng, “Ultraviolet and visible imaging and spectrographic imaging instrument,” Appl. Opt. 33, 4201–4213 (1994).
    [CrossRef] [PubMed]
  12. A. S. Gurvich, “Fluctuations during observations of extraterrestrial sources from space through the atmosphere of the Earth,” Radiophys. Quantum Electron. 27, 665–673 (1984).
    [CrossRef]
  13. F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. 102, 19,449–18,459 (1997).
    [CrossRef]
  14. G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Sokolovskii, S. A. Savchenko, “Scintillation and random refraction during occultations by terrestrial atmosphere,” J. Opt. Soc. Am. A 2, 2120–2123 (1985).
    [CrossRef]
  15. G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).
  16. F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillations and in-situ techniques,” Adv. Space Res. 14, 961–964 (1994).
  17. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).
  18. A. S. Gurvich, V. Kan, “Radio wave fluctuations in satellite–atmosphere–satellite links: estimation from stellar scintillation observations and their comparison with experiment,” Atmos. Ocean. Phys. 33, 284–292 (1997).

2001

1997

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. 102, 19,449–18,459 (1997).
[CrossRef]

A. S. Gurvich, V. Kan, “Radio wave fluctuations in satellite–atmosphere–satellite links: estimation from stellar scintillation observations and their comparison with experiment,” Atmos. Ocean. Phys. 33, 284–292 (1997).

1994

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillations and in-situ techniques,” Adv. Space Res. 14, 961–964 (1994).

J. F. Carbary, E. H. Darlington, T. J. Harris, P. J. McEvaddy, M. J. Mayr, K. Peacock, C. I. Meng, “Ultraviolet and visible imaging and spectrographic imaging instrument,” Appl. Opt. 33, 4201–4213 (1994).
[CrossRef] [PubMed]

1992

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).

1990

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

1988

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

1986

D. P. Hinson, “Strong scintillation during atmospheric occultations: theoretical intensity spectra,” Radio Sci. 21, 257–270 (1986).
[CrossRef]

1985

1984

A. S. Gurvich, “Fluctuations during observations of extraterrestrial sources from space through the atmosphere of the Earth,” Radiophys. Quantum Electron. 27, 665–673 (1984).
[CrossRef]

1980

R. Woo, A. Ishimaru, F.-Ch. Yang, “Radio scintillations during occultations by turbulent planetary atmospheres,” Radio Sci. 15, 695–703 (1980).
[CrossRef]

1978

B. S. Haugstad, “Effects of inhomogeneous background on radiation propagating through turbulent planetary atmospheres,” Radio Sci. 13, 435–440 (1978).
[CrossRef]

W. B. Hubbard, J. R. Jokipii, B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: a wave-optical theory including a finite scale height,” Icarus 34, 374–395 (1978).
[CrossRef]

1977

J. R. Jokipii, W. B. Hubbard, “Stellar scintillations by turbulent planetary atmospheres: the beta Scorpii events,” Icarus 30, 537–550 (1977).
[CrossRef]

1959

V. I. Tatarskii, L. N. Zhukova, “On chromatic stellar scintillation,” Dokl. Akad. Nauk SSSR 124, 567–569 (1959).

Alexandrov, A. P.

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Bouchet, P.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Brahic, A.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Carbary, J. F.

Dalaudier, F.

F. Dalaudier, V. Kan, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction,” Appl. Opt. 40, 866–877 (2001).
[CrossRef]

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. 102, 19,449–18,459 (1997).
[CrossRef]

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillations and in-situ techniques,” Adv. Space Res. 14, 961–964 (1994).

Darlington, E. H.

Grechko, G. M.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Sokolovskii, S. A. Savchenko, “Scintillation and random refraction during occultations by terrestrial atmosphere,” J. Opt. Soc. Am. A 2, 2120–2123 (1985).
[CrossRef]

Gurvich, A. S.

F. Dalaudier, V. Kan, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction,” Appl. Opt. 40, 866–877 (2001).
[CrossRef]

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. 102, 19,449–18,459 (1997).
[CrossRef]

A. S. Gurvich, V. Kan, “Radio wave fluctuations in satellite–atmosphere–satellite links: estimation from stellar scintillation observations and their comparison with experiment,” Atmos. Ocean. Phys. 33, 284–292 (1997).

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillations and in-situ techniques,” Adv. Space Res. 14, 961–964 (1994).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Sokolovskii, S. A. Savchenko, “Scintillation and random refraction during occultations by terrestrial atmosphere,” J. Opt. Soc. Am. A 2, 2120–2123 (1985).
[CrossRef]

A. S. Gurvich, “Fluctuations during observations of extraterrestrial sources from space through the atmosphere of the Earth,” Radiophys. Quantum Electron. 27, 665–673 (1984).
[CrossRef]

Harris, T. J.

Haugstad, B. S.

B. S. Haugstad, “Effects of inhomogeneous background on radiation propagating through turbulent planetary atmospheres,” Radio Sci. 13, 435–440 (1978).
[CrossRef]

Hinson, D. P.

D. P. Hinson, “Strong scintillation during atmospheric occultations: theoretical intensity spectra,” Radio Sci. 21, 257–270 (1986).
[CrossRef]

Hubbard, W. B.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

W. B. Hubbard, J. R. Jokipii, B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: a wave-optical theory including a finite scale height,” Icarus 34, 374–395 (1978).
[CrossRef]

J. R. Jokipii, W. B. Hubbard, “Stellar scintillations by turbulent planetary atmospheres: the beta Scorpii events,” Icarus 30, 537–550 (1977).
[CrossRef]

Ishimaru, A.

R. Woo, A. Ishimaru, F.-Ch. Yang, “Radio scintillations during occultations by turbulent planetary atmospheres,” Radio Sci. 15, 695–703 (1980).
[CrossRef]

Jokipii, J. R.

W. B. Hubbard, J. R. Jokipii, B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: a wave-optical theory including a finite scale height,” Icarus 34, 374–395 (1978).
[CrossRef]

J. R. Jokipii, W. B. Hubbard, “Stellar scintillations by turbulent planetary atmospheres: the beta Scorpii events,” Icarus 30, 537–550 (1977).
[CrossRef]

Kan, V.

F. Dalaudier, V. Kan, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction,” Appl. Opt. 40, 866–877 (2001).
[CrossRef]

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

A. S. Gurvich, V. Kan, “Radio wave fluctuations in satellite–atmosphere–satellite links: estimation from stellar scintillation observations and their comparison with experiment,” Atmos. Ocean. Phys. 33, 284–292 (1997).

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillations and in-situ techniques,” Adv. Space Res. 14, 961–964 (1994).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Sokolovskii, S. A. Savchenko, “Scintillation and random refraction during occultations by terrestrial atmosphere,” J. Opt. Soc. Am. A 2, 2120–2123 (1985).
[CrossRef]

Kireev, S. V.

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).

Lellouch, E.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Manarov, M. Kh.

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Mayr, M. J.

McEvaddy, P. J.

McLaren, R. A.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Meng, C. I.

Pakhomov, A. I.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Peacock, K.

Perrier, C.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Podvyazny, Ya. P.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

Romanenko, Yu. V.

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Savchenko, S. A.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Sokolovskii, S. A. Savchenko, “Scintillation and random refraction during occultations by terrestrial atmosphere,” J. Opt. Soc. Am. A 2, 2120–2123 (1985).
[CrossRef]

Serova, S. I.

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Sicardy, B.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Sidi, C.

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillations and in-situ techniques,” Adv. Space Res. 14, 961–964 (1994).

Sokolovskii, S. V.

Tatarskii, V. I.

V. I. Tatarskii, L. N. Zhukova, “On chromatic stellar scintillation,” Dokl. Akad. Nauk SSSR 124, 567–569 (1959).

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).

Titov, V. G.

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

VIlas, F.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Wilking, B. A.

W. B. Hubbard, J. R. Jokipii, B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: a wave-optical theory including a finite scale height,” Icarus 34, 374–395 (1978).
[CrossRef]

Woo, R.

R. Woo, A. Ishimaru, F.-Ch. Yang, “Radio scintillations during occultations by turbulent planetary atmospheres,” Radio Sci. 15, 695–703 (1980).
[CrossRef]

Yang, F.-Ch.

R. Woo, A. Ishimaru, F.-Ch. Yang, “Radio scintillations during occultations by turbulent planetary atmospheres,” Radio Sci. 15, 695–703 (1980).
[CrossRef]

Zhukova, L. N.

V. I. Tatarskii, L. N. Zhukova, “On chromatic stellar scintillation,” Dokl. Akad. Nauk SSSR 124, 567–569 (1959).

Adv. Space Res.

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12, 10,169–10,175 (1992).

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillations and in-situ techniques,” Adv. Space Res. 14, 961–964 (1994).

Appl. Opt.

Astrophys. J.

W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. VIlas, P. Bouchet, R. A. McLaren, C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325, 490–502 (1988).
[CrossRef]

Atmos. Ocean. Phys.

A. P. Alexandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

A. S. Gurvich, V. Kan, “Radio wave fluctuations in satellite–atmosphere–satellite links: estimation from stellar scintillation observations and their comparison with experiment,” Atmos. Ocean. Phys. 33, 284–292 (1997).

Dokl. Akad. Nauk SSSR

V. I. Tatarskii, L. N. Zhukova, “On chromatic stellar scintillation,” Dokl. Akad. Nauk SSSR 124, 567–569 (1959).

Icarus

W. B. Hubbard, J. R. Jokipii, B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: a wave-optical theory including a finite scale height,” Icarus 34, 374–395 (1978).
[CrossRef]

J. R. Jokipii, W. B. Hubbard, “Stellar scintillations by turbulent planetary atmospheres: the beta Scorpii events,” Icarus 30, 537–550 (1977).
[CrossRef]

J. Geophys. Res.

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. 102, 19,449–18,459 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Radio Sci.

R. Woo, A. Ishimaru, F.-Ch. Yang, “Radio scintillations during occultations by turbulent planetary atmospheres,” Radio Sci. 15, 695–703 (1980).
[CrossRef]

B. S. Haugstad, “Effects of inhomogeneous background on radiation propagating through turbulent planetary atmospheres,” Radio Sci. 13, 435–440 (1978).
[CrossRef]

D. P. Hinson, “Strong scintillation during atmospheric occultations: theoretical intensity spectra,” Radio Sci. 21, 257–270 (1986).
[CrossRef]

Radiophys. Quantum Electron.

A. S. Gurvich, “Fluctuations during observations of extraterrestrial sources from space through the atmosphere of the Earth,” Radiophys. Quantum Electron. 27, 665–673 (1984).
[CrossRef]

Trans. R. Astron. Soc. Sec. A

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyazny, S. A. Savchenko, “Observations of atmospheric turbulence on altitudes 20–70 km,” Trans. R. Astron. Soc. Sec. A 357, 1382–1385 (1997).

Other

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Variation of CCC as a function of anisotropy coefficient η for GOMOS fast photometers with effective Gaussian filters. In each figure the eight curves correspond to different altitudes. Dashed curves, theoretical diffraction limit, independent of the anisotropy coefficient. Short lines at the right-hand side of each figure show the corresponding theoretical values of the CCC for this limiting case of layered inhomogeneities: turbulence with 3-D spectrum slope parameters (a) μ = 11/3 and nonmatched filters, (b) μ = 11/3 and matched filters, (c) μ = 5 and nonmatched filters, (d) μ = 5 and matched filters.

Fig. 2
Fig. 2

Isolines of the CCF for GOMOS spectrometer pixels in the case of oblique occultation. Angle α = 80°; anisotropic fluctuations with η = 25 and μ = 5 for altitude 25 km.

Fig. 3
Fig. 3

Isolines of the CCF for GOMOS spectrometer pixels in the case of vertical occultation; Kolmogorov turbulence (isotropic with slope parameter μ = 11/3) and altitude 30 km.

Fig. 4
Fig. 4

Isolines of the CCF for GOMOS spectrometer pixels in the case of oblique occultation; angle α = 6°, Kolmogorov turbulence, and altitude 30 km.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

RJΔpS, Δy; λ1, λ2BJΔpS, Δy; λ1, λ2σJ2λ1 · σJ2λ21/2,
ΔpA=ϕΔpS-ϕΔS,
ΔpS=Δy cot α,
KmaxRJ=RJΔpS=ΔS, Δy=0; λ1, λ2.
tan α<ηϕ Δz*ΔA+Δz*.
tan α<ηϕ ΔpfΔA+Δpf,
tan α<ηϕ.
tan α<ϕ Fr2πΔA.
IpS, λ=WsλWapA, λϕpA, λ,
FIκz, κy; λ1, λ2=4k1k2ϕexp-iκzΔS×sinϕD2k1κzϕ2+D2k1 κy2×sinϕD2k2κzϕ2+D2k2 κy2×Ψ¯λ1Ψ¯λ2Fψκz/ϕ, κy,
JpS= WfλIpS, y, λdλ=ϕWpA, λ0Δλ,
FJκz, κy; λ1, λ2FIκz, κy; λ01, λ02H˜1κzϕH˜2*κzϕ,
H˜1κzϕ wξ1exp-iΔp1ξ1κzϕdξ1
H˜1τκz, κy=sinτ/2vSκz cos α+κy sin ατ/2vSκz cos α+κy sin α,
H˜1cκz, κy=H˜1κzϕH˜1τκz, κy.
BJΔpS, Δy; λ1, λ2= dκzdκyFJκz, κy; λ1, λ2×expiκzΔpS+iκyΔy=4k01k02ϕ Ψ¯λ01Ψ¯λ02  dκzdκy×exp-iκzΔSexpiκzΔpS+iκyΔy×sinϕD2k01κzϕ2+D2k01 κy2×sinϕD2k02κzϕ2+D2k02 κy2×Fψκzϕ, κyH˜1cκz, κyH˜2c*κz, κy.
Fψκz, κy=πrEH Φεκz, κy, 0.
VJκs, α; λ1, λ2= FJκscos α-κi sin α, κi cos α; λ1, λ2dκi.
VJκz; λ1, λ2= FJκz, κy; λ1, λ2dκy.
γκz=arctanIm VJκz; λ1, λ2Re VJκz; λ1, λ2=-κzΔS
VJaκz; λ1, λ2=4k01k02ϕ Ψ¯λ01Ψ¯λ02×exp-Δp12+Δp224πκzϕ2×exp-iκzΔSsinϕD2k01κzϕ2×sinϕD2k02κzϕ2Vψaκzϕ,
Φεκx, κy, κz=ACε2η2κz2+η2κx2+κy2-μ/2,
Vεaκz= Φεκx, κy, κzdκxdκy=2πACε2μ-2 κz-μ+2Vψaκz=Vεaκz1+κz2H2-1/2.
Kdif=1-βγ1-β2γ/2,
Kbf=2Δp1Δp2Δp12+Δp226-μ/2.
ηeηϕ>1  μ=5, ηe>ηcr30  μ=11/3,

Metrics