Abstract

We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth’s atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
    [CrossRef]
  2. A. F. Popescu, “ENVISAT’s Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 365–373 (1994).
    [CrossRef]
  3. A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
    [CrossRef]
  4. ENVISAT home page, http://envisat.estec.esa.nl/ .
  5. D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997).
    [CrossRef]
  6. D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997).
    [CrossRef]
  7. D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).
  8. Ch. Montigny, “Essai sur les effets de la réfraction et de la dispersion produits par l’air atmosphérique,” Mem Cl. Soc. Acad. R. Belg. 26, 1–70 (1855).
  9. Ch. Montigny, “Sur la scintillation,” Cosmos 19, 166–168, 191–196 (1856).
  10. Ch. Montigny, “Notice sur la séparation des trajectoires décrites dans l’atomsphère par des rayons de même origine sidérale, mais de réfrangibilité différente, et sur les effets de cette séparation à l’égard de la scintillation,” Bull. Acad. R. Belg. 29, 80–99 (1870).
  11. L. Respighi, “Sur la scintillation des étoiles,” C. R. Assoc. Fr. Avance. Sci. 1, 148–155 (1872).
  12. F. Zwicky, “Seeing,” Publ. Astron. Soc. Pac. 62, 150–155 (1950).
    [CrossRef]
  13. V. Kan, F. Dalaudier, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. II. Statistical properties of scintillations,” Appl. Opt. 40, 878–889 (2001).
    [CrossRef]
  14. Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics in Inhomogeneous Media (Springer-Verlag, Berlin, 1990).
    [CrossRef]
  15. A. T. Young, “Scintillations during occultations by planets: an approximate theory,” Icarus 27, 335–357 (1976).
    [CrossRef]
  16. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
    [CrossRef]
  17. A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).
  18. P. B. Hays, R. G. Roble, “Stellar spectra and atmospheric composition,” J. Atmos. Sci. 25, 1141–1153 (1968).
    [CrossRef]
  19. R. G. Roble, P. B. Hays, “A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data,” Planet. Space Sci. 20, 1727–1744 (1972).
    [CrossRef]
  20. U.S. Standard Atmosphere (U.S. Government Printing Office, Washington, D.C., 1976) or http://www.pdas.com/atmos.htm .
  21. G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).
  22. S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Wave Propagation Through Random Media, Vol. 4 of Principles of Statistical Radiophysics (Springer-Verlag, Berlin, 1989).
  23. F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. D 102, 19,449–19,459 (1997).
    [CrossRef]
  24. A. S. Gurvich, V. Kan, O. V. Fedorova, “Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations,” Atmos. Ocean. Phys. 31, 742–749 (1996).
  25. F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994).
    [CrossRef]
  26. A. S. Gurvich, S. V. Sokolovskii, “Two wavelength observations of stellar scintillation for autonomous satellite navigation,” Navigation 38, 359–366 (1992).

2001 (1)

1998 (1)

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).

1997 (4)

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997).
[CrossRef]

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. D 102, 19,449–19,459 (1997).
[CrossRef]

1996 (1)

A. S. Gurvich, V. Kan, O. V. Fedorova, “Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations,” Atmos. Ocean. Phys. 31, 742–749 (1996).

1994 (1)

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994).
[CrossRef]

1992 (1)

A. S. Gurvich, S. V. Sokolovskii, “Two wavelength observations of stellar scintillation for autonomous satellite navigation,” Navigation 38, 359–366 (1992).

1991 (1)

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

1990 (1)

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

1976 (1)

A. T. Young, “Scintillations during occultations by planets: an approximate theory,” Icarus 27, 335–357 (1976).
[CrossRef]

1972 (1)

R. G. Roble, P. B. Hays, “A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data,” Planet. Space Sci. 20, 1727–1744 (1972).
[CrossRef]

1968 (1)

P. B. Hays, R. G. Roble, “Stellar spectra and atmospheric composition,” J. Atmos. Sci. 25, 1141–1153 (1968).
[CrossRef]

1966 (1)

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

1950 (1)

F. Zwicky, “Seeing,” Publ. Astron. Soc. Pac. 62, 150–155 (1950).
[CrossRef]

1872 (1)

L. Respighi, “Sur la scintillation des étoiles,” C. R. Assoc. Fr. Avance. Sci. 1, 148–155 (1872).

1870 (1)

Ch. Montigny, “Notice sur la séparation des trajectoires décrites dans l’atomsphère par des rayons de même origine sidérale, mais de réfrangibilité différente, et sur les effets de cette séparation à l’égard de la scintillation,” Bull. Acad. R. Belg. 29, 80–99 (1870).

1856 (1)

Ch. Montigny, “Sur la scintillation,” Cosmos 19, 166–168, 191–196 (1856).

1855 (1)

Ch. Montigny, “Essai sur les effets de la réfraction et de la dispersion produits par l’air atmosphérique,” Mem Cl. Soc. Acad. R. Belg. 26, 1–70 (1855).

Aleksandrov, A. P.

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Asseman, I.

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

Bertaux, J. L.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Chassefière, E.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Dalaudier, F.

V. Kan, F. Dalaudier, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. II. Statistical properties of scintillations,” Appl. Opt. 40, 878–889 (2001).
[CrossRef]

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. D 102, 19,449–19,459 (1997).
[CrossRef]

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994).
[CrossRef]

Dravins, D.

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997).
[CrossRef]

Edlen, B.

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Fedorova, O. V.

A. S. Gurvich, V. Kan, O. V. Fedorova, “Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations,” Atmos. Ocean. Phys. 31, 742–749 (1996).

Grechko, G. M.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Gurvich, A. S.

V. Kan, F. Dalaudier, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. II. Statistical properties of scintillations,” Appl. Opt. 40, 878–889 (2001).
[CrossRef]

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. D 102, 19,449–19,459 (1997).
[CrossRef]

A. S. Gurvich, V. Kan, O. V. Fedorova, “Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations,” Atmos. Ocean. Phys. 31, 742–749 (1996).

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994).
[CrossRef]

A. S. Gurvich, S. V. Sokolovskii, “Two wavelength observations of stellar scintillation for autonomous satellite navigation,” Navigation 38, 359–366 (1992).

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Hays, P. B.

R. G. Roble, P. B. Hays, “A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data,” Planet. Space Sci. 20, 1727–1744 (1972).
[CrossRef]

P. B. Hays, R. G. Roble, “Stellar spectra and atmospheric composition,” J. Atmos. Sci. 25, 1141–1153 (1968).
[CrossRef]

Kan, V.

V. Kan, F. Dalaudier, A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. II. Statistical properties of scintillations,” Appl. Opt. 40, 878–889 (2001).
[CrossRef]

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

A. S. Gurvich, V. Kan, O. V. Fedorova, “Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations,” Atmos. Ocean. Phys. 31, 742–749 (1996).

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994).
[CrossRef]

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Korpela, S.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Kravtsov, Yu. A.

Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics in Inhomogeneous Media (Springer-Verlag, Berlin, 1990).
[CrossRef]

S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Wave Propagation Through Random Media, Vol. 4 of Principles of Statistical Radiophysics (Springer-Verlag, Berlin, 1989).

Kyrola, E.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Lindegren, L.

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997).
[CrossRef]

Manarov, M. Kh.

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Mau, K. D.

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

Mégie, G.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Mezey, E.

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997).
[CrossRef]

Montigny, Ch.

Ch. Montigny, “Notice sur la séparation des trajectoires décrites dans l’atomsphère par des rayons de même origine sidérale, mais de réfrangibilité différente, et sur les effets de cette séparation à l’égard de la scintillation,” Bull. Acad. R. Belg. 29, 80–99 (1870).

Ch. Montigny, “Sur la scintillation,” Cosmos 19, 166–168, 191–196 (1856).

Ch. Montigny, “Essai sur les effets de la réfraction et de la dispersion produits par l’air atmosphérique,” Mem Cl. Soc. Acad. R. Belg. 26, 1–70 (1855).

Orlov, Yu. I.

Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics in Inhomogeneous Media (Springer-Verlag, Berlin, 1990).
[CrossRef]

Pakhomov, A. I.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

Pakomov, A. I.

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Paulsen, T.

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

Pellinen, R.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Podvyaznyi, Ya. P.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

Popescu, A. F.

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

A. F. Popescu, “ENVISAT’s Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 365–373 (1994).
[CrossRef]

Ratier, G.

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

Respighi, L.

L. Respighi, “Sur la scintillation des étoiles,” C. R. Assoc. Fr. Avance. Sci. 1, 148–155 (1872).

Roble, R. G.

R. G. Roble, P. B. Hays, “A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data,” Planet. Space Sci. 20, 1727–1744 (1972).
[CrossRef]

P. B. Hays, R. G. Roble, “Stellar spectra and atmospheric composition,” J. Atmos. Sci. 25, 1141–1153 (1968).
[CrossRef]

Romanenko, A. I.

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Rytov, S. M.

S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Wave Propagation Through Random Media, Vol. 4 of Principles of Statistical Radiophysics (Springer-Verlag, Berlin, 1989).

Savchenko, S. A.

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Serova, S. I.

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Sidi, C.

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994).
[CrossRef]

Simon, P.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Sokolovskii, S. V.

A. S. Gurvich, S. V. Sokolovskii, “Two wavelength observations of stellar scintillation for autonomous satellite navigation,” Navigation 38, 359–366 (1992).

Tatarskii, V. I.

S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Wave Propagation Through Random Media, Vol. 4 of Principles of Statistical Radiophysics (Springer-Verlag, Berlin, 1989).

Titov, V. G.

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Uguen, G.

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

Widemann, T.

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

Wilson, R.

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

Young, A. T.

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997).
[CrossRef]

A. T. Young, “Scintillations during occultations by planets: an approximate theory,” Icarus 27, 335–357 (1976).
[CrossRef]

Zwicky, F.

F. Zwicky, “Seeing,” Publ. Astron. Soc. Pac. 62, 150–155 (1950).
[CrossRef]

Adv. Space Res. (2)

J. L. Bertaux, G. Mégie, T. Widemann, E. Chassefière, R. Pellinen, E. Kyrola, S. Korpela, P. Simon, “Monitoring of ozone trend by stellar occultations: the GOMOS instrument,” Adv. Space Res. 11, 237–242 (1991).
[CrossRef]

F. Dalaudier, A. S. Gurvich, V. Kan, C. Sidi, “Middle stratosphere temperature spectra observed with stellar scintillation and in-situ techniques,” Adv. Space Res. 14, 61–64 (1994).
[CrossRef]

Appl. Opt. (1)

Atmos. Ocean. Phys. (2)

A. S. Gurvich, V. Kan, O. V. Fedorova, “Refraction angle fluctuations in the atmosphere from space observations of stellar scintillations,” Atmos. Ocean. Phys. 31, 742–749 (1996).

A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakomov, A. I. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, “Spectra of temperature variations in the stratosphere as indicated by satellite-borne observation of the twinkling of stars,” Atmos. Ocean. Phys. 26, 1–8 (1990).

Bull. Acad. R. Belg. (1)

Ch. Montigny, “Notice sur la séparation des trajectoires décrites dans l’atomsphère par des rayons de même origine sidérale, mais de réfrangibilité différente, et sur les effets de cette séparation à l’égard de la scintillation,” Bull. Acad. R. Belg. 29, 80–99 (1870).

C. R. Assoc. Fr. Avance. Sci. (1)

L. Respighi, “Sur la scintillation des étoiles,” C. R. Assoc. Fr. Avance. Sci. 1, 148–155 (1872).

Cosmos (1)

Ch. Montigny, “Sur la scintillation,” Cosmos 19, 166–168, 191–196 (1856).

Icarus (1)

A. T. Young, “Scintillations during occultations by planets: an approximate theory,” Icarus 27, 335–357 (1976).
[CrossRef]

J. Atmos. Sci. (1)

P. B. Hays, R. G. Roble, “Stellar spectra and atmospheric composition,” J. Atmos. Sci. 25, 1141–1153 (1968).
[CrossRef]

J. Geophys. Res. D (1)

F. Dalaudier, A. S. Gurvich, “A scalar three dimensional spectral model with variable anisotropy,” J. Geophys. Res. D 102, 19,449–19,459 (1997).
[CrossRef]

Mem Cl. Soc. Acad. R. Belg. (1)

Ch. Montigny, “Essai sur les effets de la réfraction et de la dispersion produits par l’air atmosphérique,” Mem Cl. Soc. Acad. R. Belg. 26, 1–70 (1855).

Metrologia (1)

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Navigation (1)

A. S. Gurvich, S. V. Sokolovskii, “Two wavelength observations of stellar scintillation for autonomous satellite navigation,” Navigation 38, 359–366 (1992).

Planet. Space Sci. (1)

R. G. Roble, P. B. Hays, “A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data,” Planet. Space Sci. 20, 1727–1744 (1972).
[CrossRef]

Publ. Astron. Soc. Pac. (4)

F. Zwicky, “Seeing,” Publ. Astron. Soc. Pac. 62, 150–155 (1950).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. I. Statistical distributions and temporal properties,” Publ. Astron. Soc. Pac. 109, 173–207 (1997).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength,” Publ. Astron. Soc. Pac. 109, 725–737 (1997).
[CrossRef]

D. Dravins, L. Lindegren, E. Mezey, A. T. Young, “Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures,” Publ. Astron. Soc. Pac. 110, 610–633 (1998); erratum 110, 1118 (1998).

Trans. Russ. Acad. Sci. Earth Sci. Sect. A (1)

G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Trans. Russ. Acad. Sci. Earth Sci. Sect. A 357, 1382–1385 (1997; in English).

Other (6)

S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Wave Propagation Through Random Media, Vol. 4 of Principles of Statistical Radiophysics (Springer-Verlag, Berlin, 1989).

A. F. Popescu, “ENVISAT’s Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 365–373 (1994).
[CrossRef]

A. F. Popescu, T. Paulsen, G. Ratier, G. Uguen, I. Asseman, R. Wilson, K. D. Mau, “The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on ENVISAT: requirements, design and development status,” in Advanced and Next-Generation Satellites II, H. Fujisada, G. Calamai, M. N. Sweeting, eds., Proc. SPIE2957, 42–53 (1997).
[CrossRef]

ENVISAT home page, http://envisat.estec.esa.nl/ .

Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics in Inhomogeneous Media (Springer-Verlag, Berlin, 1990).
[CrossRef]

U.S. Standard Atmosphere (U.S. Government Printing Office, Washington, D.C., 1976) or http://www.pdas.com/atmos.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Trajectories of the stars in the rotating reference frame of the GOMOS instrument. Angular coordinates are the azimuth and the elevation of the LOS. The accessible coordinate range is shown as a rectangle; the elevation range that corresponds to the Earth’s atmosphere is lightly shaded and the ground is darkly shaded. Refraction is not taken into account. Labels on the star trajectories correspond to the angular distance (in degrees) from the orbital pole. Stars contained in the orbital plane (90°) produce direct (vertical) occultations, whereas stars with angles 25.5°–27.5° produce tangent (horizontal) occultations. During their occultation, unrefracted stars with angles larger than 30° can be considered as having practically constant velocity.

Fig. 2
Fig. 2

Influence of refraction on LOS elevation during direct occultation. Diamonds are set every 10 km in tangent altitudes. With respect to the trajectory of an unrefracted star (dashed curve), where the angular velocity is practically constant, the refraction significantly reduces the apparent velocity for altitudes below ∼30 km. For oblique occultations (excluding tangent occultations or nearly so), the only change is the longer duration of the occultation. Inset, schematic separation of the apparent trajectories for red and blue stars owing to refraction. The arrows show the spatial separations that correspond to various time offsets between blue and red intensities. Vertical separation between stars (variable with altitude) is the chromatic shift.

Fig. 3
Fig. 3

Definition of parameters that characterize the ray of light. Point A, the intersection of incoming and outgoing rays, is used to define the local atmospheric screen (not shown). The position of satellite, S, defines the local observation plane. D is the distance between the atmospheric screen and the observation plane, both perpendicular to the star direction. Refraction angle ω is negative. The altitude of the unrefracted line of sight h S becomes negative for perigee point T below ∼13 km.

Fig. 4
Fig. 4

Schematic representation of the trajectories of rays with various tangent altitudes, showing the increasing divergence of the ray tubes after they cross the atmosphere. Refractive dilution is a consequence of energy conservation within the ray tubes. Chromatic effects are illustrated with an exaggerated refractivity ratio m = 1.50. Chromatic lag Δ S at the satellite level is proportional to the refraction angle, whereas the chromatic shift Δ A saturates for low altitudes (dilution ϕ smaller than 0.5).

Fig. 5
Fig. 5

Variation of the refractivity of standard air (p = 101,325 Pa, T = 15 °C) with wavelength λ according to Edlen’s formula (lower inset with λ in micrometers) in the region of the two GOMOS photometers. Values for the whole spectrometer range are given in the inset table. Positions for red and blue photometers are shown, along with corresponding refractivity bands. m - 1 = Δν/ν R = 1.12%, m B - 1 = δν B /ν B = 0.49%, m R - 1 = δν R /ν R = 0.19%.

Fig. 6
Fig. 6

Profile of the chromatic shift and chromatic lag (in meters) with tangent altitude. The dilution factor ϕ (open circles) corresponds to intensity dimming that is due to refraction. It is also the ratio between shift and lag for a given spectral bandwidth. The ratio between vertical velocities (open triangles) of the LOS (tangent point versus phase screen) is always close to 1. Below 20 km, the saturation of the chromatic shift becomes significant; phot., photometer.

Fig. 7
Fig. 7

Position of a sample bright structure produced by an inhomogeneity at 12 km in the Earth’s atmosphere as seen on the observation screen as a function of wavelength. The refractivity curve of Fig. 5 is converted into space coordinates through the (negative) refraction angle. The positions of the fast photometers are indicated. The integration domain, 1.7 km long, is shown for two GOMOS spectra in the case of vertical occultation.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D=rS2-pA21/2-pA tanω/2cos ω.
ϕ=dpAdpS=11+Ddω/dpA.
A1-A2=ϕBS1B-S2B.
S1B-S1R=Dω1B-ω1R=Dm-1ω1R.
A1-A2=ϕBS1R-S2B+ϕBDm-1ω1R.
ΔS=SB-SR=Dm-1ω1R.
ΔA=AB-AR=A2-A1=-ϕBΔS.
ΔA=Hm-1ωRmωR-H/D,
ϕB=11+DdωB/dp,  H=-ωBdωB/dp.
drT/dtdpA/dt=drTdpA=1n+rTdn/drT.
σyS, zS=dyAdzAdySdzS=11+Ddα/dyA1+Ddβ/dzA.

Metrics