Abstract

The need for a continuous monitor for environmentally important pollutants at realistic [parts-per-trillion (parts in 1012)] concentrations measured in real time (minutes) is widely recognized. We developed an instrument that is based on supersonic-jet expansion and cooling, followed by resonantly enhanced multiphoton ionization (REMPI) into a mass spectrometer. This approach furnishes the dual selectivity of narrow-band tuned laser absorption and mass analysis. We initiated a spectroscopic characterization of the jet’s collisional cooling behavior to optimize the instrument’s sensitivity and selectivity, made measurements of several aromatic compounds (including polychlorinated dioxins) by use of a one-color REMPI scheme, and demonstrated a two-color excitation scheme.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Oser, K. Copic, M. J. Coggiola, G. W. Faris, D. R. Crosley, “Congener-specific detection of dioxins using jet-REMPI,” Chemosphere (to be published).
  2. H. Oser, R. Thanner, H. H. Grotheer, “Jet-REMPI for the detection of trace gas compounds in complex gas mixtures, a tool for kinetic research and incinerator process control,” Combust. Sci. Technol. 116, 567–572 (1996).
    [Crossref]
  3. C. Weickhardt, U. Boesl, E. W. Schlag, “Laser mass spectrometry for time-resolved multicomponent analysis of exhaust gas,” Anal. Chem. 66, 1062–1069 (1994).
    [Crossref]
  4. R. Zimmermann, D. Lenoir, A. Kettrup, H. Nagel, U. Boesl, “On-line emission control of combustion processes by laser-induced resonance-enhanced multiphoton ionization–mass spectrometry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), p. 2869.
  5. J. H. Callomon, T. M. Dunn, I. M. Mills, “Rotational analysis of the 2600-Å absorption system of benzene,” Philos. Trans. R. Soc. London Ser. A 259, 499–532 (1966).
    [Crossref]
  6. M. Okruss, R. Müller, A. Hese, “High-resolution UV laser spectroscopy of jet-cooled benzene molecules: complete rotational analysis of the S1 ← S0601 (1 = ±1) band,” J. Mol. Spectrosc. 193, 293–305 (1999).
    [Crossref] [PubMed]
  7. E. B. Wilson, “Statistical weights of the rotational levels of polyatomic molecules, including methane, ammonia, benzene, cyclopropane, and ethylene,” J. Chem. Phys. 3, 276–285 (1935).
    [Crossref]
  8. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1966), Vol. III, p. 232.
  9. C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
    [Crossref]

1999 (1)

M. Okruss, R. Müller, A. Hese, “High-resolution UV laser spectroscopy of jet-cooled benzene molecules: complete rotational analysis of the S1 ← S0601 (1 = ±1) band,” J. Mol. Spectrosc. 193, 293–305 (1999).
[Crossref] [PubMed]

1996 (1)

H. Oser, R. Thanner, H. H. Grotheer, “Jet-REMPI for the detection of trace gas compounds in complex gas mixtures, a tool for kinetic research and incinerator process control,” Combust. Sci. Technol. 116, 567–572 (1996).
[Crossref]

1994 (1)

C. Weickhardt, U. Boesl, E. W. Schlag, “Laser mass spectrometry for time-resolved multicomponent analysis of exhaust gas,” Anal. Chem. 66, 1062–1069 (1994).
[Crossref]

1993 (1)

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

1966 (1)

J. H. Callomon, T. M. Dunn, I. M. Mills, “Rotational analysis of the 2600-Å absorption system of benzene,” Philos. Trans. R. Soc. London Ser. A 259, 499–532 (1966).
[Crossref]

1935 (1)

E. B. Wilson, “Statistical weights of the rotational levels of polyatomic molecules, including methane, ammonia, benzene, cyclopropane, and ethylene,” J. Chem. Phys. 3, 276–285 (1935).
[Crossref]

Boesl, U.

C. Weickhardt, U. Boesl, E. W. Schlag, “Laser mass spectrometry for time-resolved multicomponent analysis of exhaust gas,” Anal. Chem. 66, 1062–1069 (1994).
[Crossref]

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

R. Zimmermann, D. Lenoir, A. Kettrup, H. Nagel, U. Boesl, “On-line emission control of combustion processes by laser-induced resonance-enhanced multiphoton ionization–mass spectrometry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), p. 2869.

Callomon, J. H.

J. H. Callomon, T. M. Dunn, I. M. Mills, “Rotational analysis of the 2600-Å absorption system of benzene,” Philos. Trans. R. Soc. London Ser. A 259, 499–532 (1966).
[Crossref]

Coggiola, M. J.

H. Oser, K. Copic, M. J. Coggiola, G. W. Faris, D. R. Crosley, “Congener-specific detection of dioxins using jet-REMPI,” Chemosphere (to be published).

Copic, K.

H. Oser, K. Copic, M. J. Coggiola, G. W. Faris, D. R. Crosley, “Congener-specific detection of dioxins using jet-REMPI,” Chemosphere (to be published).

Crosley, D. R.

H. Oser, K. Copic, M. J. Coggiola, G. W. Faris, D. R. Crosley, “Congener-specific detection of dioxins using jet-REMPI,” Chemosphere (to be published).

Dunn, T. M.

J. H. Callomon, T. M. Dunn, I. M. Mills, “Rotational analysis of the 2600-Å absorption system of benzene,” Philos. Trans. R. Soc. London Ser. A 259, 499–532 (1966).
[Crossref]

Faris, G. W.

H. Oser, K. Copic, M. J. Coggiola, G. W. Faris, D. R. Crosley, “Congener-specific detection of dioxins using jet-REMPI,” Chemosphere (to be published).

Grotheer, H. H.

H. Oser, R. Thanner, H. H. Grotheer, “Jet-REMPI for the detection of trace gas compounds in complex gas mixtures, a tool for kinetic research and incinerator process control,” Combust. Sci. Technol. 116, 567–572 (1996).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1966), Vol. III, p. 232.

Hese, A.

M. Okruss, R. Müller, A. Hese, “High-resolution UV laser spectroscopy of jet-cooled benzene molecules: complete rotational analysis of the S1 ← S0601 (1 = ±1) band,” J. Mol. Spectrosc. 193, 293–305 (1999).
[Crossref] [PubMed]

Kettrup, A.

R. Zimmermann, D. Lenoir, A. Kettrup, H. Nagel, U. Boesl, “On-line emission control of combustion processes by laser-induced resonance-enhanced multiphoton ionization–mass spectrometry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), p. 2869.

Lenoir, D.

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

R. Zimmermann, D. Lenoir, A. Kettrup, H. Nagel, U. Boesl, “On-line emission control of combustion processes by laser-induced resonance-enhanced multiphoton ionization–mass spectrometry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), p. 2869.

Mills, I. M.

J. H. Callomon, T. M. Dunn, I. M. Mills, “Rotational analysis of the 2600-Å absorption system of benzene,” Philos. Trans. R. Soc. London Ser. A 259, 499–532 (1966).
[Crossref]

Müller, R.

M. Okruss, R. Müller, A. Hese, “High-resolution UV laser spectroscopy of jet-cooled benzene molecules: complete rotational analysis of the S1 ← S0601 (1 = ±1) band,” J. Mol. Spectrosc. 193, 293–305 (1999).
[Crossref] [PubMed]

Nagel, H.

R. Zimmermann, D. Lenoir, A. Kettrup, H. Nagel, U. Boesl, “On-line emission control of combustion processes by laser-induced resonance-enhanced multiphoton ionization–mass spectrometry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), p. 2869.

Okruss, M.

M. Okruss, R. Müller, A. Hese, “High-resolution UV laser spectroscopy of jet-cooled benzene molecules: complete rotational analysis of the S1 ← S0601 (1 = ±1) band,” J. Mol. Spectrosc. 193, 293–305 (1999).
[Crossref] [PubMed]

Oser, H.

H. Oser, R. Thanner, H. H. Grotheer, “Jet-REMPI for the detection of trace gas compounds in complex gas mixtures, a tool for kinetic research and incinerator process control,” Combust. Sci. Technol. 116, 567–572 (1996).
[Crossref]

H. Oser, K. Copic, M. J. Coggiola, G. W. Faris, D. R. Crosley, “Congener-specific detection of dioxins using jet-REMPI,” Chemosphere (to be published).

Schlag, E. W.

C. Weickhardt, U. Boesl, E. W. Schlag, “Laser mass spectrometry for time-resolved multicomponent analysis of exhaust gas,” Anal. Chem. 66, 1062–1069 (1994).
[Crossref]

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

Schramm, K.-W.

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

Thanner, R.

H. Oser, R. Thanner, H. H. Grotheer, “Jet-REMPI for the detection of trace gas compounds in complex gas mixtures, a tool for kinetic research and incinerator process control,” Combust. Sci. Technol. 116, 567–572 (1996).
[Crossref]

Weickhardt, C.

C. Weickhardt, U. Boesl, E. W. Schlag, “Laser mass spectrometry for time-resolved multicomponent analysis of exhaust gas,” Anal. Chem. 66, 1062–1069 (1994).
[Crossref]

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

Wilson, E. B.

E. B. Wilson, “Statistical weights of the rotational levels of polyatomic molecules, including methane, ammonia, benzene, cyclopropane, and ethylene,” J. Chem. Phys. 3, 276–285 (1935).
[Crossref]

Zimmermann, R.

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

R. Zimmermann, D. Lenoir, A. Kettrup, H. Nagel, U. Boesl, “On-line emission control of combustion processes by laser-induced resonance-enhanced multiphoton ionization–mass spectrometry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), p. 2869.

Anal. Chem. (1)

C. Weickhardt, U. Boesl, E. W. Schlag, “Laser mass spectrometry for time-resolved multicomponent analysis of exhaust gas,” Anal. Chem. 66, 1062–1069 (1994).
[Crossref]

Combust. Sci. Technol. (1)

H. Oser, R. Thanner, H. H. Grotheer, “Jet-REMPI for the detection of trace gas compounds in complex gas mixtures, a tool for kinetic research and incinerator process control,” Combust. Sci. Technol. 116, 567–572 (1996).
[Crossref]

J. Chem. Phys. (1)

E. B. Wilson, “Statistical weights of the rotational levels of polyatomic molecules, including methane, ammonia, benzene, cyclopropane, and ethylene,” J. Chem. Phys. 3, 276–285 (1935).
[Crossref]

J. Mol. Spectrosc. (1)

M. Okruss, R. Müller, A. Hese, “High-resolution UV laser spectroscopy of jet-cooled benzene molecules: complete rotational analysis of the S1 ← S0601 (1 = ±1) band,” J. Mol. Spectrosc. 193, 293–305 (1999).
[Crossref] [PubMed]

Philos. Trans. R. Soc. London Ser. A (1)

J. H. Callomon, T. M. Dunn, I. M. Mills, “Rotational analysis of the 2600-Å absorption system of benzene,” Philos. Trans. R. Soc. London Ser. A 259, 499–532 (1966).
[Crossref]

Rapid Commun. Mass. Spectrom. (1)

C. Weickhardt, R. Zimmermann, K.-W. Schramm, D. Lenoir, U. Boesl, E. W. Schlag, “Laser mass spectrometry of dibenzodioxin, dibenzofuran, and two isomers of dichlorodibenzodioxins: selective ionization,” Rapid Commun. Mass. Spectrom. 7, 183–187 (1993).
[Crossref]

Other (3)

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1966), Vol. III, p. 232.

H. Oser, K. Copic, M. J. Coggiola, G. W. Faris, D. R. Crosley, “Congener-specific detection of dioxins using jet-REMPI,” Chemosphere (to be published).

R. Zimmermann, D. Lenoir, A. Kettrup, H. Nagel, U. Boesl, “On-line emission control of combustion processes by laser-induced resonance-enhanced multiphoton ionization–mass spectrometry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), p. 2869.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the jet–REMPI apparatus developed at SRI.

Fig. 2
Fig. 2

Two-dimensional map of the parent-ion mass and the S 1S 0 transition wavelength for a number of common HAP’s.

Fig. 3
Fig. 3

High-resolution two-dimensional map that corresponds to the region of Fig. 2 that contains the 2,3-DCDD and the 2,8-DCDD isomers. The instrumental mass and the wavelength resolutions are also shown.

Fig. 4
Fig. 4

Relative ion signal and spectroscopic fittings for the 1 B 2 u 1 A 1 g 601 transition in benzene. Shown are (a) the measured REMPI data and calculated fittings to the data (b) with the assumption of no saturation and (c) with the assumption of complete saturation of the individual rotational lines. The center of the transition band that was investigated was 38 606 cm-1 and was centered at zero on the laser-energy coordinate.

Fig. 5
Fig. 5

Jet–REMPI wavelength dependence for an equimolar mixture of 2,7-DCDD and 2,8-DCDD measured at m/ z = 252.

Fig. 6
Fig. 6

Wavelength dependence of the m/ z = 146 ion signal for 1,2-dichlorobenzene recorded by use of both a one-color, two-photon excitation–ionization scheme and a two-color, two-photon REMPI scheme.

Metrics