Abstract

A sensor for the rapid (10-ms response time) measurement of vapors from the hydrocarbon-based fuels JP-8, DF-2, and gasoline is described. The sensor is based on a previously reported laser-mixing technique that uses two tunable diode lasers emitting in the near-infrared spectral region [Appl. Opt. 39, 5006 (2000)] to measure concentrations of gases that have unstructured absorption spectra. The fiber-mixed laser beam consists of two wavelengths: one that is absorbed by the fuel vapor and one that is not absorbed. Sinusoidally modulating the power of the two lasers at the same frequency but 180° out of phase allows a sinusoidal signal to be generated at the detector (when the target gas is present in the line of sight). The signal amplitude, measured by use of standard phase-sensitive detection techniques, is proportional to the fuel-vapor concentration. Limits of detection at room temperature are reported for the vapors of the three fuels studied. Improvements to be incorporated into the next generation of the sensor are discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. McNesby, R. T. Wainner, A. W. Miziolek, W. M. Jackson, I. A. McLaren, “High-sensitivity laser absorption measurements of broadband absorbers in the near-infrared spectral region,” Appl. Opt. 39, 5006–5011 (2000).
    [CrossRef]
  2. D. W. Naegeli, K. H. Childress, “Lower explosion limits and compositions of middle distillate fuel vapors,” in Proceedings of the Fall Meeting of the Society of Automotive Engineers, (Society of Automotive Engineers, Warrendale, Pa., 1998), pp. 1–7 SAE paper 982485.
  3. S. H. Modiano, K. L. McNesby, P. E. Marsh, W. Bolt, C. Herud, “Quantitative measurements by Fourier transform infrared spectroscopy of toxic gas production during inhibition of JP-8 fires by CF3Br and C3F7H,” Appl. Opt. 35, 4004–4008 (1996).
    [CrossRef] [PubMed]
  4. J. Wormhoudt, ed., Infrared Methods for Gaseous Measurements—Theory and Practice (Marcel Dekker, New York, 1985).
  5. P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
    [CrossRef]
  6. See the website http://www.brandtinst.com/biosystems/appnotes/equiv3.htm .
  7. P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectrometry,” Vib. Spectrosc. 19, 165–176 (1999).
    [CrossRef]
  8. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  9. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–921 (1997).
    [CrossRef] [PubMed]
  10. P. Werle, “A review of recent advances in semiconductor laser-based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
    [CrossRef]
  11. G. Hertzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945).
  12. M. Allen, Physical Sciences, Inc., 20 New England Business Center, Andover, Mass. 01810 (personal communication, 1April1999).
  13. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  14. P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, New York, 1986).
  15. I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
    [CrossRef]

2000 (1)

1999 (1)

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectrometry,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

1998 (2)

P. Werle, “A review of recent advances in semiconductor laser-based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

1992 (1)

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Allen, M.

M. Allen, Physical Sciences, Inc., 20 New England Business Center, Andover, Mass. 01810 (personal communication, 1April1999).

Bean, J. H.

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

Beaton, S. P.

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

Bishop, G. A.

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

Bolt, W.

Bomse, D. S.

Childress, K. H.

D. W. Naegeli, K. H. Childress, “Lower explosion limits and compositions of middle distillate fuel vapors,” in Proceedings of the Fall Meeting of the Society of Automotive Engineers, (Society of Automotive Engineers, Warrendale, Pa., 1998), pp. 1–7 SAE paper 982485.

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, New York, 1986).

Griffiths, P. R.

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectrometry,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, New York, 1986).

Guenther, P. L.

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

Hertzberg, G.

G. Hertzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945).

Herud, C.

Hirsche, B. L.

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectrometry,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

Hobbs, P. C. D.

Jackson, W. M.

Jaeger, T.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Linnerud, I.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Manning, C. J.

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectrometry,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

Marsh, P. E.

McLaren, I. A.

McNesby, K. L.

Miziolek, A. W.

Modiano, S. H.

Naegeli, D. W.

D. W. Naegeli, K. H. Childress, “Lower explosion limits and compositions of middle distillate fuel vapors,” in Proceedings of the Fall Meeting of the Society of Automotive Engineers, (Society of Automotive Engineers, Warrendale, Pa., 1998), pp. 1–7 SAE paper 982485.

Quine, R. W.

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Silver, J. A.

Stanton, A. C.

Stedman, D. H.

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

Wainner, R. T.

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser-based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (2)

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

P. L. Guenther, D. H. Stedman, G. A. Bishop, S. P. Beaton, J. H. Bean, R. W. Quine, “A hydrocarbon detector for the remote sensing of vehicle exhaust emissions,” Rev. Sci. Instrum. 66, 3024–3029 (1995).
[CrossRef]

Spectrochim. Acta Part A (1)

P. Werle, “A review of recent advances in semiconductor laser-based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

Vib. Spectrosc. (1)

P. R. Griffiths, B. L. Hirsche, C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectrometry,” Vib. Spectrosc. 19, 165–176 (1999).
[CrossRef]

Other (6)

J. Wormhoudt, ed., Infrared Methods for Gaseous Measurements—Theory and Practice (Marcel Dekker, New York, 1985).

See the website http://www.brandtinst.com/biosystems/appnotes/equiv3.htm .

G. Hertzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945).

M. Allen, Physical Sciences, Inc., 20 New England Business Center, Andover, Mass. 01810 (personal communication, 1April1999).

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, New York, 1986).

D. W. Naegeli, K. H. Childress, “Lower explosion limits and compositions of middle distillate fuel vapors,” in Proceedings of the Fall Meeting of the Society of Automotive Engineers, (Society of Automotive Engineers, Warrendale, Pa., 1998), pp. 1–7 SAE paper 982485.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Infrared transmission spectra of room-temperature vapor from the middle-distillate fuels JP-8, DF2, and gasoline. The fundamental C–H absorption in each of these fuels is near a wavelength of 3.3 µm. The first overtone of the C–H stretch is near a wavelength of 1.71 µm. The spectra are offset for clarity. GRIN, gradient-index lens.

Fig. 2
Fig. 2

Experimental laser-mixing apparatus that was used in the measurements of the spectra of the fuel concentrations.

Fig. 3
Fig. 3

C–H stretch first-overtone region for the fuels used in the experiments. Also shown is the spectrum of the mixed laser beam. The line shapes of the mixed laser beam at 1.3 and 1.7 µm are due to the instrument line shape (sinc) of the interferometer.

Fig. 4
Fig. 4

Approach to the LEL for hydrocarbon vapor, as measured with the mixed-laser sensor, as the dry air in a 13-l optical cell is slowly displaced by air that is saturated with gasoline vapor at 1 atm and 294 K. Also shown is the change in oxygen concentration during the displacement. The solid curve represents gasoline vapor in parts per million. The lighter-shaded (roughly horizontal) curve represents the oxygen fraction (by volume). (The oxygen sensor was provided courtesy of Oxigraf, Inc., Mountain View, California.)

Fig. 5
Fig. 5

Increase in JP-8 vapor within the 13-l optical cell as the dry air in the cell is displaced with air that is saturated by JP-8 vapor at 1 atm and 294 K. The difference between run 1 and run 5 is caused by the loss of volatile hydrocarbons from the fuel sample.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

lλR=l0λRexp-αλRcl.
lλR=l0λR1+DR sinatexp-αλRcl.
lλR+λNR=l0λR1+DR sinatexp-αλRcI+l0λNR1+DNR sinat+π.
C0π  l0λR1+DRexp-αλRcl-l0λNR×1+DNRsinatp sinatdt=C/2pπ{l0λR1+DRexp-αλRcl-l0λNR×1+DNR.
2C0π  l0λR1+DRexp-αλRcl-l0λNR×1+DNRsinatp sinatdt=Cpπl0λR1+DR-l0λNR1+DNR-l0λR×1+DRA.
2C0π  l0λR1+DRexp-αλRcl-l0λNR×1+DNRsinatp sinatdt=-Cpπl0λR1+DRA.

Metrics