Abstract

A sensor for the rapid (10-ms response time) measurement of vapors from the hydrocarbon-based fuels JP-8, DF-2, and gasoline is described. The sensor is based on a previously reported laser-mixing technique that uses two tunable diode lasers emitting in the near-infrared spectral region [Appl. Opt. 39, 5006 (2000)] to measure concentrations of gases that have unstructured absorption spectra. The fiber-mixed laser beam consists of two wavelengths: one that is absorbed by the fuel vapor and one that is not absorbed. Sinusoidally modulating the power of the two lasers at the same frequency but 180° out of phase allows a sinusoidal signal to be generated at the detector (when the target gas is present in the line of sight). The signal amplitude, measured by use of standard phase-sensitive detection techniques, is proportional to the fuel-vapor concentration. Limits of detection at room temperature are reported for the vapors of the three fuels studied. Improvements to be incorporated into the next generation of the sensor are discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription