Abstract

Water vapor is measured by use of a near-infrared diode laser and wavelength-modulation absorption spectroscopy. Humidity levels as low as 5 nmol/mol [1 nmol/mol = 1 ppb (1 ppb equals 1 part in 109)] of water vapor in air are measured with a sensitivity of better than 0.2 nmol/mol (3σ). The sensitivity, linearity, and stability of the technique are determined in experiments conducted at the National Institute of Standards and Technology, Gaithersburg, Maryland, by use of the low frost-point humidity generator over the range from 5 nmol/mol to 2.5 µmol/mol of water vapor in air. The pressure-broadening coefficients for water broadened by helium [0.0199(6) cm-1 atm-1 HWHM] and by hydrogen chloride [0.268(6) cm-1 atm-1 HWHM] are reported for the water line at 1392.5 nm.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).
  2. J. J. McAndrew, D. Boucheron, “Moisture analysis in process gas streams,” Solid State Technol. 35, 55–60 (1992).
  3. S. A. Tison, J. P. Looney, “Workshop on water: its measurement and control in vacuum,” J. Res. Natl. Inst. Stand. Technol. 100, 75–83 (1995).
    [CrossRef]
  4. S. Ketkar, “Atmospheric pressure ionization mass spectrometry calibration and measurement of sub ppb levels of water in bulk gases,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 22–23; see also Ref. 3.
  5. B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
    [CrossRef]
  6. G. Atkinson, “High sensitivity water detection: intracavity laser spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 44–45; see also Ref. 3.
  7. B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
    [CrossRef]
  8. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
    [CrossRef]
  9. J. A. Mucha, “Standard addition technique for quantitative trace gas analysis using derivative infrared diode laser spectroscopy,” Appl. Spectrosc. 36, 393–400 (1982).
    [CrossRef]
  10. R. S. Inman, J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
    [CrossRef]
  11. C. Hovde, J. A. Silver, “High sensitivity measurement of water vapor by tunable diode laser absorption spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 47–48; see also Ref. 3.
  12. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  13. J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  14. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  15. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
    [CrossRef]
  16. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
    [CrossRef]
  17. The assignment listed by HITRAN (Ref. 37) for this transition is (ν1ν2ν3)JKa,Kc = (0,0,0)30,3 → (1,0,1)20,2.
  18. S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
    [CrossRef] [PubMed]
  19. S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999).
    [CrossRef]
  20. J.-M. Girard, P. Mauvais, “PPB-level hygrometry in nitrogen and ESG’s using tunable diode laser spectroscopy,” in Proceedings of the International Symposium on Semiconductor Manufacturing ’96 (Institute of Electrical and Electronic Engineers, New York, 1996), pp. 325–328.
  21. R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
    [CrossRef]
  22. A. Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents by employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
    [CrossRef] [PubMed]
  23. D. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  24. J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
    [CrossRef] [PubMed]
  25. Manufacturers and product names are given solely for completeness. These specific citations neither constitute an endorsement of the products nor imply that similar products from other companies would be less suitable.
  26. A. Nadezhdinskii, “Diode laser frequency tuning,” Spectrochim. Acta Part A 52, 959–965 (1996).
    [CrossRef]
  27. D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. Part B 29, 279–285 (1982).
    [CrossRef]
  28. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
    [CrossRef] [PubMed]
  29. J. A. Silver, A. C. Stanton, “Laser absorption detection enhancing method and apparatus,” U.S. patent4,934,816 (19June1990).
  30. G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.
  31. A. Wexler, “Vapor pressure formulation for ice,” J. Res. Natl. Bur. Stand. Part A 81, 5–19 (1977).
    [CrossRef]
  32. R. W. Hyland, “A correlation for the second interaction virial coefficients and enhancement factors for moist air,” J. Res. Natl. Bur. Stand. Part A 79, 551–560 (1975).
    [CrossRef]
  33. N. Goldstein, S. Aldergolden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992).
    [CrossRef] [PubMed]
  34. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  35. A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978).
    [CrossRef]
  36. V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
    [CrossRef] [PubMed]
  37. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]
  38. The Allan variance calculation was made by use of the LabView computer program SRAV.VI, written by D. Moschella and downloaded from ftp://ftp.pica.army.mil/pub/labview/vi/.
  39. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
    [CrossRef]
  40. R. R. Gamache, R. Lynch, L. Brown, “Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas,” J. Quant. Spectrosc. Radiat. Transfer 56, 471–487 (1996).
    [CrossRef]
  41. V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
    [CrossRef]
  42. J. A. Mucha, L. C. Barbalas, “Infrared diode laser determination of trace moisture in gases,” ISA Trans. 25, 25–30 (1986).
  43. D. C. Hovde, D. J. Kane, J. A. Silver, “Process for reducing interfering signals in optical measurements of water vapor,” U.S. patent5,804,702 (8September1998).
  44. T. Iguchi, “Modulation waveforms for second-harmonic detection with tunable diode lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986).
    [CrossRef]

1999 (3)

1998 (1)

S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

1997 (2)

B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
[CrossRef]

J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).

1996 (3)

A. Nadezhdinskii, “Diode laser frequency tuning,” Spectrochim. Acta Part A 52, 959–965 (1996).
[CrossRef]

R. R. Gamache, R. Lynch, L. Brown, “Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas,” J. Quant. Spectrosc. Radiat. Transfer 56, 471–487 (1996).
[CrossRef]

V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
[CrossRef] [PubMed]

1995 (3)

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

S. A. Tison, J. P. Looney, “Workshop on water: its measurement and control in vacuum,” J. Res. Natl. Inst. Stand. Technol. 100, 75–83 (1995).
[CrossRef]

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

1994 (1)

R. S. Inman, J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

1993 (3)

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

A. Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents by employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
[CrossRef] [PubMed]

1992 (4)

1988 (1)

1986 (2)

T. Iguchi, “Modulation waveforms for second-harmonic detection with tunable diode lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986).
[CrossRef]

J. A. Mucha, L. C. Barbalas, “Infrared diode laser determination of trace moisture in gases,” ISA Trans. 25, 25–30 (1986).

1982 (2)

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. Part B 29, 279–285 (1982).
[CrossRef]

J. A. Mucha, “Standard addition technique for quantitative trace gas analysis using derivative infrared diode laser spectroscopy,” Appl. Spectrosc. 36, 393–400 (1982).
[CrossRef]

1981 (2)

J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
[CrossRef] [PubMed]

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1978 (1)

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978).
[CrossRef]

1977 (1)

A. Wexler, “Vapor pressure formulation for ice,” J. Res. Natl. Bur. Stand. Part A 81, 5–19 (1977).
[CrossRef]

1975 (1)

R. W. Hyland, “A correlation for the second interaction virial coefficients and enhancement factors for moist air,” J. Res. Natl. Bur. Stand. Part A 79, 551–560 (1975).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

1964 (1)

Aldergolden, S.

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Altmann, J.

Armstrong, B. H.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Atkinson, G.

G. Atkinson, “High sensitivity water detection: intracavity laser spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 44–45; see also Ref. 3.

Avetisov, V. G.

Axner, O.

Barbalas, L. C.

J. A. Mucha, L. C. Barbalas, “Infrared diode laser determination of trace moisture in gases,” ISA Trans. 25, 25–30 (1986).

Baumgart, R.

Bien, F.

Bomse, D. S.

Boucheron, D.

J. J. McAndrew, D. Boucheron, “Moisture analysis in process gas streams,” Solid State Technol. 35, 55–60 (1992).

Brown, L.

R. R. Gamache, R. Lynch, L. Brown, “Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas,” J. Quant. Spectrosc. Radiat. Transfer 56, 471–487 (1996).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Cassidy, D. T.

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. Part B 29, 279–285 (1982).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Drummond, J. R.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Espinoza, L. H.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Fleischmann, O.

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

Fried, A.

Gamache, R. R.

R. R. Gamache, R. Lynch, L. Brown, “Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas,” J. Quant. Spectrosc. Radiat. Transfer 56, 471–487 (1996).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Garcia, M. J.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Girard, J.-M.

J.-M. Girard, P. Mauvais, “PPB-level hygrometry in nitrogen and ESG’s using tunable diode laser spectroscopy,” in Proceedings of the International Symposium on Semiconductor Manufacturing ’96 (Institute of Electrical and Electronic Engineers, New York, 1996), pp. 325–328.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Goldstein, N.

Harris, J. S.

B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
[CrossRef]

Henry, B.

Herriott, D.

Hodges, J. T.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.

Hovde, C.

C. Hovde, J. A. Silver, “High sensitivity measurement of water vapor by tunable diode laser absorption spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 47–48; see also Ref. 3.

Hovde, D. C.

D. C. Hovde, D. J. Kane, J. A. Silver, “Process for reducing interfering signals in optical measurements of water vapor,” U.S. patent5,804,702 (8September1998).

Huang, P. H.

G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.

Hui, A. K.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978).
[CrossRef]

Hyland, R. W.

R. W. Hyland, “A correlation for the second interaction virial coefficients and enhancement factors for moist air,” J. Res. Natl. Bur. Stand. Part A 79, 551–560 (1975).
[CrossRef]

Iguchi, T.

Inguscio, M.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Inman, R. S.

R. S. Inman, J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Kane, D. J.

D. C. Hovde, D. J. Kane, J. A. Silver, “Process for reducing interfering signals in optical measurements of water vapor,” U.S. patent5,804,702 (8September1998).

Kauranen, P.

Ketkar, S.

S. Ketkar, “Atmospheric pressure ionization mass spectrometry calibration and measurement of sub ppb levels of water in bulk gases,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 22–23; see also Ref. 3.

Kimishima, T.

S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999).
[CrossRef]

S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

King, S. M.

J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).

Kluczynski, P.

Kogelnik, H.

Kompfner, R.

Kronfeldt, H.-D.

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

Kuze, H.

S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lazarev, V. V.

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

Lee, J.

Looney, J. P.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

S. A. Tison, J. P. Looney, “Workshop on water: its measurement and control in vacuum,” J. Res. Natl. Inst. Stand. Technol. 100, 75–83 (1995).
[CrossRef]

Lynch, R.

R. R. Gamache, R. Lynch, L. Brown, “Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas,” J. Quant. Spectrosc. Radiat. Transfer 56, 471–487 (1996).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Martin, J.

B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Masusaki, H.

S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999).
[CrossRef]

S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Mauvais, P.

J.-M. Girard, P. Mauvais, “PPB-level hygrometry in nitrogen and ESG’s using tunable diode laser spectroscopy,” in Proceedings of the International Symposium on Semiconductor Manufacturing ’96 (Institute of Electrical and Electronic Engineers, New York, 1996), pp. 325–328.

May, R. D.

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

McAndrew, J. J.

J. J. McAndrew, D. Boucheron, “Moisture analysis in process gas streams,” Solid State Technol. 35, 55–60 (1992).

McAndrew, J. J. F.

R. S. Inman, J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Morishita, J.

S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Mucha, J. A.

J. A. Mucha, L. C. Barbalas, “Infrared diode laser determination of trace moisture in gases,” ISA Trans. 25, 25–30 (1986).

J. A. Mucha, “Standard addition technique for quantitative trace gas analysis using derivative infrared diode laser spectroscopy,” Appl. Spectrosc. 36, 393–400 (1982).
[CrossRef]

Nadezhdinskii, A.

A. Nadezhdinskii, “Diode laser frequency tuning,” Spectrochim. Acta Part A 52, 959–965 (1996).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Niemczyk, T. M.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Olson, D. A.

G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.

Paldus, B. A.

B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
[CrossRef]

Pavone, F. S.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Pillion, J. E.

J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).

Ponomarev, Yu. N.

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

Reid, J.

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. Part B 29, 279–285 (1982).
[CrossRef]

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Rowe, R. K.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Scace, G. E.

G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Silver, J. A.

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Laser absorption detection enhancing method and apparatus,” U.S. patent4,934,816 (19June1990).

C. Hovde, J. A. Silver, “High sensitivity measurement of water vapor by tunable diode laser absorption spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 47–48; see also Ref. 3.

D. C. Hovde, D. J. Kane, J. A. Silver, “Process for reducing interfering signals in optical measurements of water vapor,” U.S. patent5,804,702 (8September1998).

Stallard, B. R.

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

Stanton, A. C.

Stroinova, V. N.

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

Sumpf, B.

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

Takeuchi, N.

S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999).
[CrossRef]

Tison, S. A.

S. A. Tison, J. P. Looney, “Workshop on water: its measurement and control in vacuum,” J. Res. Natl. Inst. Stand. Technol. 100, 75–83 (1995).
[CrossRef]

van Zee, R. D.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Verlinden, M.

J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).

Waschull, J.

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Webster, C. R.

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

Wei, J.

J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).

Weitkamp, C.

Wexler, A.

A. Wexler, “Vapor pressure formulation for ice,” J. Res. Natl. Bur. Stand. Part A 81, 5–19 (1977).
[CrossRef]

Whetstone, J. R.

G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.

Wray, A. A.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978).
[CrossRef]

Wu, S.-Q.

S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999).
[CrossRef]

S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Xie, J.

B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

Zare, R. N.

B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
[CrossRef]

Anal. Chem. (2)

R. S. Inman, J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

S.-Q. Wu, J. Morishita, H. Masusaki, T. Kimishima, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998).
[CrossRef] [PubMed]

Appl. Opt. (10)

D. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
[CrossRef]

J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
[CrossRef] [PubMed]

J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

N. Goldstein, S. Aldergolden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992).
[CrossRef] [PubMed]

A. Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents by employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
[CrossRef] [PubMed]

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (2)

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Appl. Phys. Part B (1)

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. Part B 29, 279–285 (1982).
[CrossRef]

Appl. Spectrosc. (1)

ISA Trans. (1)

J. A. Mucha, L. C. Barbalas, “Infrared diode laser determination of trace moisture in gases,” ISA Trans. 25, 25–30 (1986).

J. Appl. Phys. (2)

B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
[CrossRef]

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Electrochem. Soc. (1)

B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995).
[CrossRef]

J. Mol. Spectrosc. (1)

V. V. Lazarev, Yu. N. Ponomarev, B. Sumpf, O. Fleischmann, J. Waschull, H.-D. Kronfeldt, V. N. Stroinova, “Noble gas pressure-induced broadening and shift of H2O and SO2 absorption lines,” J. Mol. Spectrosc. 173, 177–193 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (3)

R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993).
[CrossRef]

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978).
[CrossRef]

R. R. Gamache, R. Lynch, L. Brown, “Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas,” J. Quant. Spectrosc. Radiat. Transfer 56, 471–487 (1996).
[CrossRef]

J. Res. Natl. Bur. Stand. Part A (2)

A. Wexler, “Vapor pressure formulation for ice,” J. Res. Natl. Bur. Stand. Part A 81, 5–19 (1977).
[CrossRef]

R. W. Hyland, “A correlation for the second interaction virial coefficients and enhancement factors for moist air,” J. Res. Natl. Bur. Stand. Part A 79, 551–560 (1975).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

S. A. Tison, J. P. Looney, “Workshop on water: its measurement and control in vacuum,” J. Res. Natl. Inst. Stand. Technol. 100, 75–83 (1995).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

S.-Q. Wu, H. Masusaki, T. Kimishima, H. Kuze, N. Takeuchi, “Absorption spectrometry of trace moisture in ammonia gas with a 1371-nm distributed-feedback diode laser,” Jpn. J. Appl. Phys. Part 1 38, 4788–4793 (1999).
[CrossRef]

MICRO Mag. (1)

J. Wei, J. E. Pillion, S. M. King, M. Verlinden, “Using an in-line monitor to obtain real-time moisture measurements,” MICRO Mag. 15, 31–36 (1997).

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Solid State Technol. (1)

J. J. McAndrew, D. Boucheron, “Moisture analysis in process gas streams,” Solid State Technol. 35, 55–60 (1992).

Spectrochim. Acta Part A (1)

A. Nadezhdinskii, “Diode laser frequency tuning,” Spectrochim. Acta Part A 52, 959–965 (1996).
[CrossRef]

Other (11)

S. Ketkar, “Atmospheric pressure ionization mass spectrometry calibration and measurement of sub ppb levels of water in bulk gases,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 22–23; see also Ref. 3.

G. Atkinson, “High sensitivity water detection: intracavity laser spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 44–45; see also Ref. 3.

C. Hovde, J. A. Silver, “High sensitivity measurement of water vapor by tunable diode laser absorption spectroscopy,” in Proceedings of the NIST/AVS Workshop on Water: Its Measurement and Control in Vacuum (National Institute of Standards and Technology, Gaithersburg, Md., 1994), pp. 47–48; see also Ref. 3.

J.-M. Girard, P. Mauvais, “PPB-level hygrometry in nitrogen and ESG’s using tunable diode laser spectroscopy,” in Proceedings of the International Symposium on Semiconductor Manufacturing ’96 (Institute of Electrical and Electronic Engineers, New York, 1996), pp. 325–328.

The assignment listed by HITRAN (Ref. 37) for this transition is (ν1ν2ν3)JKa,Kc = (0,0,0)30,3 → (1,0,1)20,2.

Manufacturers and product names are given solely for completeness. These specific citations neither constitute an endorsement of the products nor imply that similar products from other companies would be less suitable.

The Allan variance calculation was made by use of the LabView computer program SRAV.VI, written by D. Moschella and downloaded from ftp://ftp.pica.army.mil/pub/labview/vi/.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60, 665–710 (1998); HITRAN 1996 (Ontar Corp., 9 Village Way, North Andover, Mass. 01845-2000, 1996).
[CrossRef]

D. C. Hovde, D. J. Kane, J. A. Silver, “Process for reducing interfering signals in optical measurements of water vapor,” U.S. patent5,804,702 (8September1998).

J. A. Silver, A. C. Stanton, “Laser absorption detection enhancing method and apparatus,” U.S. patent4,934,816 (19June1990).

G. E. Scace, P. H. Huang, J. T. Hodges, D. A. Olson, J. R. Whetstone, “The new NIST low frost-point humidity generator,” in Proceedings of the 1997 National Conference of Standards Laboratories: Workshop and Symposium (National Conference of Standards Laboratories, 1800 30th Street, Suite 305B, Boulder, Co., 1997), pp. 657–673.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the WMLH (top) and detail of the laser-head assembly (bottom).

Fig. 2
Fig. 2

Measured WMLH spectrum at 5 nmol/mol of water vapor in air (filled circles) converted from the raw lock-in amplifier/dc ratio to absorbance units and the fitted spectral data (curve).

Fig. 3
Fig. 3

Measured versus the generated water-vapor mole fraction: The open circles represent the spectroscopic determination of the water-vapor mole fraction by WMLH (x w,WMS, left-hand coordinate) plotted versus the LFPG-generated mole fraction (x w,LFPG) as predicted from the saturator temperature and pressure. The solid curve represents the linear fit to the WMLH data. The filled triangles (residual, right-hand coordinate) correspond to the WMLH measured value minus the predicted value of the water-vapor mole fraction for which the predicted values were based on the linear fit to the WMS data (curve).

Fig. 4
Fig. 4

Two time series of the LFPG expected output (solid curve) and the water-vapor mole fraction as measured by the WMS sensor (open circles).

Fig. 5
Fig. 5

Time series of the LFPG expected water-vapor mode fraction (dashed curve) and the WMS-measured water-vapor mole fraction (open and filled circles and solid curves). The flow rate through the LFPG was abruptly changed from 3.0 l/min to 4.5 l/min at t ∼ 70 min and then set back to 3.0 l/min at t ∼ 120 min. For this test the flow rate through the WMS sample volume was constant. The mole fractions are expressed as a difference from a representative mean value.

Fig. 6
Fig. 6

Square root of the Allan variance (filled circles) plotted as a function of the averaging time for two time series that correspond to the WMS-measured mean water-vapor mole fractions of (a) 18.9 nmol/mol and (b) 100 nmol/mol. The dashed curves represent the expected decay in the Allan variance for fluctuations that obey stationary Gaussian statistics. Shown in the inset of each graph is the corresponding distribution and Gaussian fit of the observed mole fractions. Note that, in (a), the optimum averaging is approximately 1200 s and the square root of the Allan variance is approximately 65 pmol of water vapor per mole of air.

Fig. 7
Fig. 7

Pressure-broadening measurement in He and HCl: (a) Dependence on He pressure of the Lorentzian component of the Voigt linewidth of the water transition17 at 1392.53 nm as determined by WMS (squares) and by direct absorption (triangles). The solid curve represents a fit of all the data constrained to a zero intercept whose slope [5.8(2) kHz/Pa] is the He pressure-broadening coefficient. (b) Lorentzian component of the water transition plotted versus the HCl pressure as measured by direct absorption (squares). The solid curve is the same as for (a) but with a slope of 79(2) kHz/Pa. The dashed, horizontal lines in each graph indicate the Doppler HWHM.

Tables (1)

Tables Icon

Table 1 Parameters Used to Compute Moisture Concentrations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V2fVdc=G2f2fGdcdcI2fIdc,
V2fVdc=wH2OgWMSν+wΔνdgWMSν/dν+wBB.
nH2O=wH2OGdcSlG2f,

Metrics