Abstract

High-resolution absorption measurements of CO2 were made in a heated static cell and in the combustion region above a flat-flame burner for the development of an in situ CO2 combustion diagnostic based on a distributed-feedback diode laser operating near 2.0 µm. Calculated absorption spectra of high-temperature H2O and CO2 were used to find candidate transitions for CO2 detection, and the R(50) transition at 1.997 µm (the ν 1 + 2ν 2 + ν 3 band) was selected on the basis of its line strength and its isolation from interfering high-temperature water absorption. Measurements of spectroscopic parameters such as the line strength, the self-broadening coefficient, and the line position were made for the R(50) transition, and an improved value for the line strength is reported. The combustion-product populations of CO2 in the combustion region above a flat-flame burner were determined in situ to verify the measured spectroscopic parameters and to demonstrate the feasibility of the diode-laser sensor.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
    [CrossRef] [PubMed]
  2. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
    [CrossRef]
  3. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  4. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” Proc. Combust. Inst. 27, 95–101 (1998).
  5. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
    [CrossRef]
  6. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
    [CrossRef]
  7. E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive control using diode-laser absorption sensors,” Proc. Combust. Inst. 27, 103–111 (1998).
  8. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  9. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  10. L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
    [CrossRef]
  11. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, and O2 in the 300–2400 K temperature range,” Appl. Opt. 27, 3902–3907 (1988).
    [CrossRef] [PubMed]
  12. S. T. Sanders, D. S. Baer, R. K. Hanson, “Diode laser absorption sensor for measurements in pulse detonation engines,” in Proceedings of the Thirty-Eighth AIAA Aerospace Sciences Conference (American Institute of Aeronautics and Astronautics, New York, 2000), paper 2000-0358.

1998 (6)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” Proc. Combust. Inst. 27, 95–101 (1998).

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive control using diode-laser absorption sensors,” Proc. Combust. Inst. 27, 103–111 (1998).

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
[CrossRef]

1997 (2)

1996 (1)

1992 (1)

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

1988 (1)

Allen, M. G.

Baer, D. S.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive control using diode-laser absorption sensors,” Proc. Combust. Inst. 27, 103–111 (1998).

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” Proc. Combust. Inst. 27, 95–101 (1998).

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

S. T. Sanders, D. S. Baer, R. K. Hanson, “Diode laser absorption sensor for measurements in pulse detonation engines,” in Proceedings of the Thirty-Eighth AIAA Aerospace Sciences Conference (American Institute of Aeronautics and Astronautics, New York, 2000), paper 2000-0358.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Chou, S. I.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Furlong, E. R.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive control using diode-laser absorption sensors,” Proc. Combust. Inst. 27, 103–111 (1998).

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Hanson, R. K.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive control using diode-laser absorption sensors,” Proc. Combust. Inst. 27, 103–111 (1998).

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” Proc. Combust. Inst. 27, 95–101 (1998).

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

S. T. Sanders, D. S. Baer, R. K. Hanson, “Diode laser absorption sensor for measurements in pulse detonation engines,” in Proceedings of the Thirty-Eighth AIAA Aerospace Sciences Conference (American Institute of Aeronautics and Astronautics, New York, 2000), paper 2000-0358.

Hartmann, J. M.

Hawkins, R. L.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” Proc. Combust. Inst. 27, 95–101 (1998).

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

Nagali, V.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Perrin, M. Y.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rosenmann, L.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Sanders, S. T.

S. T. Sanders, D. S. Baer, R. K. Hanson, “Diode laser absorption sensor for measurements in pulse detonation engines,” in Proceedings of the Thirty-Eighth AIAA Aerospace Sciences Conference (American Institute of Aeronautics and Astronautics, New York, 2000), paper 2000-0358.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Segall, J.

Sonnenfroh, D. M.

Taine, J.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Webber, M. E.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecularspectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Proc. Combust. Inst. (2)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” Proc. Combust. Inst. 27, 95–101 (1998).

E. R. Furlong, D. S. Baer, R. K. Hanson, “Real-time adaptive control using diode-laser absorption sensors,” Proc. Combust. Inst. 27, 103–111 (1998).

Other (1)

S. T. Sanders, D. S. Baer, R. K. Hanson, “Diode laser absorption sensor for measurements in pulse detonation engines,” in Proceedings of the Thirty-Eighth AIAA Aerospace Sciences Conference (American Institute of Aeronautics and Astronautics, New York, 2000), paper 2000-0358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Calculated water and carbon dioxide line strengths in the near-IR range at 1500 K.9

Fig. 2
Fig. 2

Calculated spectra of 10% CO2 and 10% H2O near 1.997 µm under combustion conditions: L = 10 cm, P = 1 atm, and T = 1500 K. The R(50) and the R(56) transitions of the ν 1 + 2ν 2 + ν 3 band at 5007.787 and 5010.035 cm-1, respectively, are partially isolated from high-temperature water interference.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup for the measurement of the absorption spectra of CO2 at a range of pressures and temperatures.

Fig. 4
Fig. 4

Absorbance of pure CO2 for various pressures near 5008 cm-1 at T = 294 K and L = 40 cm.

Fig. 5
Fig. 5

Sample line shape for static-cell measurements of CO2 absorbance at 5007.787 cm-1 for the R(50) transition with P = 68.1 Torr, L = 40 cm, and T = 294 K.

Fig. 6
Fig. 6

Measured integrated absorbance area plotted versus the CO2 pressure at T = 294 K for the R(50) line at ν 0 = 5007.787 cm-1. The line strength for this transition is inferred from the slope to be 0.001355 cm-2 atm-1.

Fig. 7
Fig. 7

Line strength plotted versus the temperature for the R(50) transition at 5007.787 cm-1.

Fig. 8
Fig. 8

Measured collisional widths plotted versus the CO2 pressure at T = 294 K for the R(50) line at ν 0 = 5007.787 cm-1. The self-broadening coefficient for this transition is inferred from the slope to be 0.149 cm-1 atm-1.

Fig. 9
Fig. 9

Schematic diagram of the experimental setup for the in situ combustion measurements.

Fig. 10
Fig. 10

Comparison of the measured CO2 mole fraction in the combustion region with equilibrium values. The experimental uncertainty is shown at only one point for clarity.

Fig. 11
Fig. 11

Sample CO2 line shape for absorption measurements in the combustion region by use of the R(50) transition with ϕ = 0.79, X CO2 = 0.105, T = 1690 K, P = 1 atm, and L = 17 cm.

Tables (1)

Tables Icon

Table 1 Comparison of Measured and Published Parameters for the CO2 Transitions that Neighbor 5007.787 cm-1

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ItI0=exp-SiϕPxjL.
ΔνC=P B XB2γA-B.
2γT=2γT0T0TN,
ΔνD=7.1623×10-7ν0,i TM,
a=ln 21/2 ΔνCΔνD.
SiT=SiT0QT0QTT0Texp-hcEik1T-1T0×1-exp-hcν0,ikT1-exp-hcν0,ikT0-1.

Metrics