Abstract

The detectability of wavelength-modulation (WM) diode-laser spectrometric techniques is frequently limited by various background signals. A new theoretical formalism for WM spectrometry, based on Fourier analysis and therefore capable of handling a variety of phenomena including the characterization and the analysis of analytical as well as background WM signals, was recently presented [Appl. Opt. 38, 5803 (1999)]. We report a detailed characterization of WM background signals from multiple reflections between pairs of surfaces in the optical system that act as etalons and from the associated intensity modulation in terms of this new formalism. The agreement between the background signals from a thin glass plate and those predicted by the formalism is good, which verifies the new Fourier analysis-based formalism.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
    [CrossRef] [PubMed]
  2. M. L. Olsen, D. L. Grieble, P. R. Griffiths, “Second derivative tunable diode laser spectrometry for line profile determination. I. Theory,” Appl. Spectrosc. 34, 50–56 (1980).
    [CrossRef]
  3. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  4. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
    [CrossRef] [PubMed]
  5. D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
    [CrossRef]
  6. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  7. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  8. A. Zybin, C. Schnürer-Patschan, K. Niemax, “Measurements of C2F4Cl2, CCl4, CHF3, and O2 by wavelength modulated laser absorption spectroscopy of excited Cl, F, and O in a DC discharge applying semiconductor diode lasers,” Spectrochim. Acta Part B 48, 1713–1718 (1993).
    [CrossRef]
  9. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  10. C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique,” J. Anal. At. Spectrom. 8, 1103–1107 (1993).
    [CrossRef]
  11. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency-modulation and wavelength-modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [CrossRef] [PubMed]
  12. H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994).
    [CrossRef]
  13. A. Zybin, C. Schnürer-Patschan, K. Niemax, “Wavelength modulation diode laser atomic spectrometry in modulated low-pressure helium plasmas for element-selective detection in gas chromatography,” J. Anal. At. Spectrom. 10, 563–567 (1995).
    [CrossRef]
  14. C. Schnürer-Patschan, K. Niemax, “Elemental selective detection of chlorine in capillary gas chromatography by wavelength modulation diode laser atomic absorption spectrometry in a microwave induced plasma,” Spectrochim. Acta Part B 50, 963–969 (1995).
    [CrossRef]
  15. H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(iii)/Cr(vi) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995).
    [CrossRef]
  16. P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
    [CrossRef]
  17. V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997).
    [CrossRef]
  18. P. Ljung, O. Axner, “Measurements of rubidium in standard reference samples by wavelength-modulation diode laser spectrometry in graphite furnace,” Spectrochim. Acta Part B 52, 305–319 (1997).
    [CrossRef]
  19. N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998).
    [CrossRef]
  20. H. Ahlberg, S. Lundqvist, M. S. Schumate, U. Persson, “Analysis of errors caused by optical interference effects in wavelength-diverse CO2 laser long-path systems,” Appl. Opt. 24, 3917–3923 (1985).
    [CrossRef]
  21. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
    [CrossRef]
  22. L.-G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988).
    [CrossRef] [PubMed]
  23. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
    [CrossRef] [PubMed]
  24. P. V. Cvijin, W. K. Wells, D. A. Gilmore, J. Wu, D. M. Hunten, G. H. Atkinson, “Fringe pattern suppression in intracavity laser spectroscopy,” Appl. Opt. 31, 5779–5784 (1992).
    [CrossRef] [PubMed]
  25. T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993).
    [CrossRef]
  26. N. Kagawa, O. Wada, R. Koga, “Suppression of the etalon fringe in absorption spectrometry with an infrared tunable diode laser,” Opt. Eng. 36, 2586–2592 (1997).
    [CrossRef]
  27. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limit of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  28. N.-Y. Chou, G. W. Sachse, L.-G. Wang, T. F. Gallagher, “Optical fringe reduction technique for FM laser spectroscopy,” Appl. Opt. 28, 4973–4975 (1989).
    [CrossRef] [PubMed]
  29. T. Igushi, “Modulation waveforms for second-harmonic detection with tunable diode lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986).
    [CrossRef]
  30. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
    [CrossRef]
  31. O. Axner, P. Kluczynski, Å. M. Lindberg, “General noncomplex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 68, 299–371 (2001).
    [CrossRef]
  32. The various entities used in this paper are briefly defined in Appendix A.
  33. The expressions for the even Fourier components of a product of two entities was incorrectly written in Ref. 30 [Eqs. (16) and (27)] with respect to the zeroth component [the term (1 + δk0) should be replaced with 1]. The correct expression is given by Eq. (2) in this paper.
  34. In deriving Eqs. (1) and (2), we made use of the fact that all odd transmission coefficients are zero, which follows from our choice of reference phase.
  35. J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
    [CrossRef]
  36. J. Gustafsson, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb by 2f wavelength modulation diode laser absorption spectrometry—experimental verification of simulations,” Spectrochim. Acta Part B 53, 1895–1905 (1998).
    [CrossRef]

2001

O. Axner, P. Kluczynski, Å. M. Lindberg, “General noncomplex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 68, 299–371 (2001).
[CrossRef]

1999

1998

J. Gustafsson, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb by 2f wavelength modulation diode laser absorption spectrometry—experimental verification of simulations,” Spectrochim. Acta Part B 53, 1895–1905 (1998).
[CrossRef]

N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998).
[CrossRef]

1997

N. Kagawa, O. Wada, R. Koga, “Suppression of the etalon fringe in absorption spectrometry with an infrared tunable diode laser,” Opt. Eng. 36, 2586–2592 (1997).
[CrossRef]

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997).
[CrossRef]

P. Ljung, O. Axner, “Measurements of rubidium in standard reference samples by wavelength-modulation diode laser spectrometry in graphite furnace,” Spectrochim. Acta Part B 52, 305–319 (1997).
[CrossRef]

1996

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
[CrossRef]

1995

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Wavelength modulation diode laser atomic spectrometry in modulated low-pressure helium plasmas for element-selective detection in gas chromatography,” J. Anal. At. Spectrom. 10, 563–567 (1995).
[CrossRef]

C. Schnürer-Patschan, K. Niemax, “Elemental selective detection of chlorine in capillary gas chromatography by wavelength modulation diode laser atomic absorption spectrometry in a microwave induced plasma,” Spectrochim. Acta Part B 50, 963–969 (1995).
[CrossRef]

H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(iii)/Cr(vi) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995).
[CrossRef]

1994

J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency-modulation and wavelength-modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[CrossRef] [PubMed]

H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994).
[CrossRef]

1993

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Measurements of C2F4Cl2, CCl4, CHF3, and O2 by wavelength modulated laser absorption spectroscopy of excited Cl, F, and O in a DC discharge applying semiconductor diode lasers,” Spectrochim. Acta Part B 48, 1713–1718 (1993).
[CrossRef]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique,” J. Anal. At. Spectrom. 8, 1103–1107 (1993).
[CrossRef]

T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993).
[CrossRef]

1992

1989

1988

1986

1985

1982

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

1981

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980

1977

Ahlberg, H.

Atkinson, G. H.

Axner, O.

O. Axner, P. Kluczynski, Å. M. Lindberg, “General noncomplex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 68, 299–371 (2001).
[CrossRef]

P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

J. Gustafsson, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb by 2f wavelength modulation diode laser absorption spectrometry—experimental verification of simulations,” Spectrochim. Acta Part B 53, 1895–1905 (1998).
[CrossRef]

N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998).
[CrossRef]

P. Ljung, O. Axner, “Measurements of rubidium in standard reference samples by wavelength-modulation diode laser spectrometry in graphite furnace,” Spectrochim. Acta Part B 52, 305–319 (1997).
[CrossRef]

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

Ballik, E. A.

Berndt, H.

H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(iii)/Cr(vi) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995).
[CrossRef]

Bomse, D. S.

Carlisle, C. B.

Cassidy, D. T.

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

Chappell, E. L.

T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993).
[CrossRef]

Chou, N.-Y.

Cvijin, P. V.

El-Sherbiny, M.

Frech, W.

N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998).
[CrossRef]

Gallagher, T. F.

Garside, B. K.

Gilmore, D. A.

Grieble, D. L.

Griffiths, P. R.

Groll, H.

H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(iii)/Cr(vi) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995).
[CrossRef]

H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994).
[CrossRef]

C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique,” J. Anal. At. Spectrom. 8, 1103–1107 (1993).
[CrossRef]

Gustafsson, J.

N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998).
[CrossRef]

J. Gustafsson, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb by 2f wavelength modulation diode laser absorption spectrometry—experimental verification of simulations,” Spectrochim. Acta Part B 53, 1895–1905 (1998).
[CrossRef]

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

Hadgu, N.

N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998).
[CrossRef]

Hanson, R. K.

Hu, T. A.

T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993).
[CrossRef]

Hunten, D. M.

Igushi, T.

Kagawa, N.

N. Kagawa, O. Wada, R. Koga, “Suppression of the etalon fringe in absorption spectrometry with an infrared tunable diode laser,” Opt. Eng. 36, 2586–2592 (1997).
[CrossRef]

Kluczynski, P.

O. Axner, P. Kluczynski, Å. M. Lindberg, “General noncomplex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 68, 299–371 (2001).
[CrossRef]

P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

Koga, R.

N. Kagawa, O. Wada, R. Koga, “Suppression of the etalon fringe in absorption spectrometry with an infrared tunable diode laser,” Opt. Eng. 36, 2586–2592 (1997).
[CrossRef]

Kuritsyn, Y.

V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997).
[CrossRef]

H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lenth, W.

Liger, V.

V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997).
[CrossRef]

Lindberg, Å. M.

O. Axner, P. Kluczynski, Å. M. Lindberg, “General noncomplex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 68, 299–371 (2001).
[CrossRef]

Ljung, P.

P. Ljung, O. Axner, “Measurements of rubidium in standard reference samples by wavelength-modulation diode laser spectrometry in graphite furnace,” Spectrochim. Acta Part B 52, 305–319 (1997).
[CrossRef]

Lundqvist, S.

Moses, E. I.

Munley, J. T.

T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993).
[CrossRef]

Niemax, K.

V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997).
[CrossRef]

H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(iii)/Cr(vi) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995).
[CrossRef]

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Wavelength modulation diode laser atomic spectrometry in modulated low-pressure helium plasmas for element-selective detection in gas chromatography,” J. Anal. At. Spectrom. 10, 563–567 (1995).
[CrossRef]

C. Schnürer-Patschan, K. Niemax, “Elemental selective detection of chlorine in capillary gas chromatography by wavelength modulation diode laser atomic absorption spectrometry in a microwave induced plasma,” Spectrochim. Acta Part B 50, 963–969 (1995).
[CrossRef]

H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994).
[CrossRef]

C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique,” J. Anal. At. Spectrom. 8, 1103–1107 (1993).
[CrossRef]

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Measurements of C2F4Cl2, CCl4, CHF3, and O2 by wavelength modulated laser absorption spectroscopy of excited Cl, F, and O in a DC discharge applying semiconductor diode lasers,” Spectrochim. Acta Part B 48, 1713–1718 (1993).
[CrossRef]

Olsen, M. L.

Persson, U.

Philippe, L. C.

Reid, J.

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limit of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

Riris, H.

Rojas, D.

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

Sachse, G. W.

Schaldach, G.

H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(iii)/Cr(vi) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995).
[CrossRef]

Schnürer-Patschan, C.

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Wavelength modulation diode laser atomic spectrometry in modulated low-pressure helium plasmas for element-selective detection in gas chromatography,” J. Anal. At. Spectrom. 10, 563–567 (1995).
[CrossRef]

C. Schnürer-Patschan, K. Niemax, “Elemental selective detection of chlorine in capillary gas chromatography by wavelength modulation diode laser atomic absorption spectrometry in a microwave induced plasma,” Spectrochim. Acta Part B 50, 963–969 (1995).
[CrossRef]

H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994).
[CrossRef]

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Measurements of C2F4Cl2, CCl4, CHF3, and O2 by wavelength modulated laser absorption spectroscopy of excited Cl, F, and O in a DC discharge applying semiconductor diode lasers,” Spectrochim. Acta Part B 48, 1713–1718 (1993).
[CrossRef]

C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique,” J. Anal. At. Spectrom. 8, 1103–1107 (1993).
[CrossRef]

Schumate, M. S.

Sharpe, S. W.

T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993).
[CrossRef]

Silver, J. A.

Stanton, A. C.

Supplee, J. M.

Tang, C. L.

Wada, O.

N. Kagawa, O. Wada, R. Koga, “Suppression of the etalon fringe in absorption spectrometry with an infrared tunable diode laser,” Opt. Eng. 36, 2586–2592 (1997).
[CrossRef]

Wang, L.-G.

Webster, C. R.

Wells, W. K.

Werle, P.

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
[CrossRef]

Whittaker, E. A.

Wu, J.

Zybin, A.

V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997).
[CrossRef]

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Wavelength modulation diode laser atomic spectrometry in modulated low-pressure helium plasmas for element-selective detection in gas chromatography,” J. Anal. At. Spectrom. 10, 563–567 (1995).
[CrossRef]

C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique,” J. Anal. At. Spectrom. 8, 1103–1107 (1993).
[CrossRef]

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Measurements of C2F4Cl2, CCl4, CHF3, and O2 by wavelength modulated laser absorption spectroscopy of excited Cl, F, and O in a DC discharge applying semiconductor diode lasers,” Spectrochim. Acta Part B 48, 1713–1718 (1993).
[CrossRef]

Appl. Opt.

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency-modulation and wavelength-modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[CrossRef] [PubMed]

L.-G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
[CrossRef] [PubMed]

P. V. Cvijin, W. K. Wells, D. A. Gilmore, J. Wu, D. M. Hunten, G. H. Atkinson, “Fringe pattern suppression in intracavity laser spectroscopy,” Appl. Opt. 31, 5779–5784 (1992).
[CrossRef] [PubMed]

H. Ahlberg, S. Lundqvist, M. S. Schumate, U. Persson, “Analysis of errors caused by optical interference effects in wavelength-diverse CO2 laser long-path systems,” Appl. Opt. 24, 3917–3923 (1985).
[CrossRef]

P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limit of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

N.-Y. Chou, G. W. Sachse, L.-G. Wang, T. F. Gallagher, “Optical fringe reduction technique for FM laser spectroscopy,” Appl. Opt. 28, 4973–4975 (1989).
[CrossRef] [PubMed]

Appl. Phys. B

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

Appl. Spectrosc.

J. Anal. At. Spectrom.

C. Schnürer-Patschan, A. Zybin, H. Groll, K. Niemax, “Improvement in detection limit in graphite furnace diode laser atomic absorption spectrometry by wavelength modulation technique,” J. Anal. At. Spectrom. 8, 1103–1107 (1993).
[CrossRef]

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Wavelength modulation diode laser atomic spectrometry in modulated low-pressure helium plasmas for element-selective detection in gas chromatography,” J. Anal. At. Spectrom. 10, 563–567 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transfer

O. Axner, P. Kluczynski, Å. M. Lindberg, “General noncomplex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 68, 299–371 (2001).
[CrossRef]

Opt. Eng.

N. Kagawa, O. Wada, R. Koga, “Suppression of the etalon fringe in absorption spectrometry with an infrared tunable diode laser,” Opt. Eng. 36, 2586–2592 (1997).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

T. A. Hu, E. L. Chappell, J. T. Munley, S. W. Sharpe, “Improved multipass optics for diode-laser spectroscopy,” Rev. Sci. Instrum. 64, 3380–3383 (1993).
[CrossRef]

Spectrochim. Acta Part A

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996).
[CrossRef]

Spectrochim. Acta Part B

V. Liger, A. Zybin, Y. Kuritsyn, K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta Part B 52, 1125–1138 (1997).
[CrossRef]

P. Ljung, O. Axner, “Measurements of rubidium in standard reference samples by wavelength-modulation diode laser spectrometry in graphite furnace,” Spectrochim. Acta Part B 52, 305–319 (1997).
[CrossRef]

N. Hadgu, J. Gustafsson, W. Frech, O. Axner, “Rubidium atom distribution and nonspectral interference effects in transversely heated graphite atomizers evaluated by wavelength modulated diode laser absorption spectrometry,” Spectrochim. Acta Part B 53, 923–943 (1998).
[CrossRef]

C. Schnürer-Patschan, K. Niemax, “Elemental selective detection of chlorine in capillary gas chromatography by wavelength modulation diode laser atomic absorption spectrometry in a microwave induced plasma,” Spectrochim. Acta Part B 50, 963–969 (1995).
[CrossRef]

H. Groll, G. Schaldach, H. Berndt, K. Niemax, “Measurement of Cr(iii)/Cr(vi) species by wavelength modulation diode laser flame atomic absorption spectrometry,” Spectrochim. Acta Part B 50, 1293–1298 (1995).
[CrossRef]

H. Groll, C. Schnürer-Patschan, Y. Kuritsyn, K. Niemax, “Wavelength modulation diode laser atomic absorption spectrometry in analytical flames,” Spectrochim. Acta Part B 49, 1463–1472 (1994).
[CrossRef]

A. Zybin, C. Schnürer-Patschan, K. Niemax, “Measurements of C2F4Cl2, CCl4, CHF3, and O2 by wavelength modulated laser absorption spectroscopy of excited Cl, F, and O in a DC discharge applying semiconductor diode lasers,” Spectrochim. Acta Part B 48, 1713–1718 (1993).
[CrossRef]

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

J. Gustafsson, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb by 2f wavelength modulation diode laser absorption spectrometry—experimental verification of simulations,” Spectrochim. Acta Part B 53, 1895–1905 (1998).
[CrossRef]

Other

The various entities used in this paper are briefly defined in Appendix A.

The expressions for the even Fourier components of a product of two entities was incorrectly written in Ref. 30 [Eqs. (16) and (27)] with respect to the zeroth component [the term (1 + δk0) should be replaced with 1]. The correct expression is given by Eq. (2) in this paper.

In deriving Eqs. (1) and (2), we made use of the fact that all odd transmission coefficients are zero, which follows from our choice of reference phase.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Five lowest Bessel functions J n (2πν˜aFSR) plotted as functions of the FSR-normalized frequency-modulation amplitude ν˜aFSR. The open circles represent n = 0; the filled circles represent n = 1; the open squares represent n = 2; the filled squares represent n = 3; the open diamonds represent n = 4.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup. The light was produced by a temperature-stabilized laser diode that was controlled by a modulated current from a low-noise current source. The reference output from one lock-in amplifier provided the rapid frequency-modulation amplitude (1 kHz), whereas a function generator produced a ramp (with a period of 100 s) for the slow scanning of the center frequency. The photodetector collected the light from the laser diode after it passed through a thin glass plate, a high-finesse Fabry–Perot (FP) cavity, or a Rb cell. The photodetector is coupled to a set of lock-in amplifiers that, in turn, are coupled to a personal computer (PC) and an oscilloscope (not shown).

Fig. 3
Fig. 3

Measured WM background signals (symbols) and the corresponding fitted (solid) curves plotted as functions of the laser center frequency (with respect to the arbitrarily chosen ν c,0) for an optical system with a thin glass plate inserted between the laser and the detector. The open circles represent S0even, the filled circles S1even, the open squares S2even, the filled squares S3even, and the open diamonds S4even.

Fig. 4
Fig. 4

Measured S2even background signals (symbols) plotted as functions of the laser center frequency (with respect to the arbitrarily chosen ν c,0) from a 3-mm thin glass plate for seven different modulation amplitudes and the corresponding fitted (solid) curves. The open circles represent ν a = 1.1 GHz, the filled circles ν a = 1.4 GHz, the open squares ν a = 2.1 GHz, the filled squares ν a = 2.6 GHz, the open diamonds ν a = 2.9 GHz, the filled diamonds ν a = 3.5 GHz, and the open triangles ν a = 4.3 GHz.

Tables (5)

Tables Icon

Table 1 General Expressions for the Γneven, Aneven, αneven, Bneven, and βneven Components for the Sneven Background Signal

Tables Icon

Table 2 General Expressions for the Γnodd, Anodd, αnodd, Bnodd, and βnodd Components for the Snodd Background Signal

Tables Icon

Table 3 Fitted Parameter Values Common to All the Data Presented in Fig. 3

Tables Icon

Table 4 Curve-Specific Parameter Values for the Fits to the Data Presented in Fig. 3

Tables Icon

Table 5 Curve-Specific Parameter Values for the Fits to the Data Presented in Fig. 4

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Sνa, νc, t=ηTνa, νc, tILνa, νc, t,
Snevenνc, νa=η 12m=0n Tn-mevenνc, νaIL,mevenνc, νa+2-δn02m=0 Tmevenνc, νaIL,n+mevenνc, νa+2-δn02m=0 Tn+mevenνc, νaIL,mevenνc, νa,
Snoddνc, νa=η 1-δn02m=1n Tn-mevenνc, νaIL,moddνc, νa+m=0 Tmevenνc, νaIL,n+moddνc, νa-m=1 Tn+mevenνc, νaIL,moddνc, νa,
IL,0evenνc=IL,0νc,0+κ1νc-νc,0,
IL,1even=κ1νa cos ϕ1,
IL,1odd=-κ1νa sin ϕ1,
IL,2even=κ2νa2 cos ϕ2,
IL,2odd=-κ2νa2 sin ϕ2,
Sneven=ηTnevenIL,0even+121-δn01+δn1Tn-1even+Tn+1evenIL,1even+δn2T0evenIL,2even,
Snodd=η1-δn0121+δn1Tn-1even-Tn+1evenIL,1odd+δn2T0evenIL,2odd.
T=11+F sin2Φ21-F sin2Φ2+F2 sin4Φ2-,
Tnevenν˜cFSR, ν˜aFSR=δn01-F2+3F28+-1n/21+δn0×F-F2cos2πν˜cFSRJn2πν˜aFSR+F24cos4πν˜cFSRJn4πν˜aFSR, for n even,
Tnevenν˜cFSR, ν˜aFSR=-1n+1/2F-F2sin2πν˜cFSR×Jn2πν˜aFSR+F24sin4πν˜cFSR×Jn4πν˜aFSR, for n odd,
Sneven=Γneven+Aneven cos2πν˜cFSR+αneven+Bnevencos4πν˜cFSR+βneven,
Sneven=ξnΓneven+Aneven cos2πν˜cFSR+αneven+Bneven cos4πν˜cFSR+βneven,
Skνa, νc=2-δk0τ0τ SDνa, νc, tcos2πkft-θkdt,
Skνa, νc=Skevenνa, νccos θk+Skoddνa, νcsin θk,
Skevenνa, νc=2-δk0τ0τ SDνa, νc, tcos2πkftdt,
Skoddνa, νc=2τ0τ SDνa, νc, tsin2πkftdt.
iict=ic+ia cos2πft,
νt=νc+νa cos2πft,
ILt=κ1I,iciict-ith)+κ2I,iciict-ith2,
ILt=IL,0+κ1νa cos2πft+ϕ1+κ2νa2 cos2π2ft+ϕ2=IL,0νc+IL,1νacos2πft+ϕ1+IL,2νacos2π2ft+ϕ2,

Metrics