Abstract

Two-dimensional maps of the atomic-hydrogen concentration distribution were acquired with two-photon laser-induced fluorescence. The environment was a hot-filament chemical-vapor-deposition reactor used for polycrystalline diamond-film deposition. The maps were measured in situ under diamond-deposition conditions with variation of the growth parameters. The parameters investigated were filament temperature, input methane concentration, and total pressure.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Frenklach, K. E. Spear, “Growth mechanism of vapor-deposited diamond,” J. Mater. Res. 3, 133–140 (1988).
    [CrossRef]
  2. F. Jansen, M. A. Machonkin, D. E. Kuhman, “The deposition of diamond films by filament techniques,” J. Vac. Sci. Technol. A 8, 3785–3790 (1990).
    [CrossRef]
  3. D. M. Li, T. Mäntylä, R. Hernberg, J. Levoska, “Diamond deposition by coiled and grid filaments using high methane concentrations,” Diamond Rel. Mater. 5, 350–353 (1996).
    [CrossRef]
  4. D. M. Li, R. Hernberg, T. Mäntylä, “Diamond nucleation under high CH4 concentration and high filament temperature,” Diamond Rel. Mater. 7, 188–192 (1998).
    [CrossRef]
  5. D. G. Goodwin, “Scaling laws in diamond chemical vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6923 (1993).
    [CrossRef]
  6. J. Hwang, K. Zhang, B. S. Kwak, A. Erbil, “Growth of textured diamond films on Si(100) by C2H2/O2 flame method,” J. Mater. Res. 5, 2334–2336 (1990).
    [CrossRef]
  7. S. Matsumoto, M. Hino, T. Kobayashi, “Synthesis of diamond films in a RF induction thermal plasma,” Appl. Phys. Lett. 51, 737–739 (1987).
    [CrossRef]
  8. L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
    [CrossRef]
  9. R. J. H. Klein-Douwel, J. ter Meulen, “Spatial distributions of atomic hydrogen and C2 in an oxyacetylene flame in relation to diamond growth,” J. Appl. Phys. 83, 4734–4745 (1998).
    [CrossRef]
  10. L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
    [CrossRef]
  11. J. Larjo, J. Walewski, R. Hernberg, “Atomic hydrogen concentration mapping in thermal induction plasma CVD,” Appl. Phys. B (accepted for publication).
  12. K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
    [CrossRef]
  13. U. Meier, K. Kohse-Höinghaus, L. Schäfer, C.-P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
    [CrossRef] [PubMed]
  14. L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
    [CrossRef]
  15. D. G. Goodwin, “Scaling laws for diamond chemical vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
    [CrossRef]

1999 (1)

L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
[CrossRef]

1998 (2)

R. J. H. Klein-Douwel, J. ter Meulen, “Spatial distributions of atomic hydrogen and C2 in an oxyacetylene flame in relation to diamond growth,” J. Appl. Phys. 83, 4734–4745 (1998).
[CrossRef]

D. M. Li, R. Hernberg, T. Mäntylä, “Diamond nucleation under high CH4 concentration and high filament temperature,” Diamond Rel. Mater. 7, 188–192 (1998).
[CrossRef]

1996 (2)

D. M. Li, T. Mäntylä, R. Hernberg, J. Levoska, “Diamond deposition by coiled and grid filaments using high methane concentrations,” Diamond Rel. Mater. 5, 350–353 (1996).
[CrossRef]

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

1995 (1)

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

1993 (2)

D. G. Goodwin, “Scaling laws for diamond chemical vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
[CrossRef]

D. G. Goodwin, “Scaling laws in diamond chemical vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6923 (1993).
[CrossRef]

1991 (1)

L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

1990 (3)

F. Jansen, M. A. Machonkin, D. E. Kuhman, “The deposition of diamond films by filament techniques,” J. Vac. Sci. Technol. A 8, 3785–3790 (1990).
[CrossRef]

J. Hwang, K. Zhang, B. S. Kwak, A. Erbil, “Growth of textured diamond films on Si(100) by C2H2/O2 flame method,” J. Mater. Res. 5, 2334–2336 (1990).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schäfer, C.-P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

1988 (1)

M. Frenklach, K. E. Spear, “Growth mechanism of vapor-deposited diamond,” J. Mater. Res. 3, 133–140 (1988).
[CrossRef]

1987 (1)

S. Matsumoto, M. Hino, T. Kobayashi, “Synthesis of diamond films in a RF induction thermal plasma,” Appl. Phys. Lett. 51, 737–739 (1987).
[CrossRef]

Butler, J. E.

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

Chérigier, L.

L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
[CrossRef]

Chu, H.-N.

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

Conell, L. L.

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

Czarnetski, U.

L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
[CrossRef]

Döbele, H.

L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
[CrossRef]

Erbil, A.

J. Hwang, K. Zhang, B. S. Kwak, A. Erbil, “Growth of textured diamond films on Si(100) by C2H2/O2 flame method,” J. Mater. Res. 5, 2334–2336 (1990).
[CrossRef]

Fling, J. W.

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

Frenklach, M.

M. Frenklach, K. E. Spear, “Growth mechanism of vapor-deposited diamond,” J. Mater. Res. 3, 133–140 (1988).
[CrossRef]

Goodwin, D. G.

D. G. Goodwin, “Scaling laws in diamond chemical vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6923 (1993).
[CrossRef]

D. G. Goodwin, “Scaling laws for diamond chemical vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
[CrossRef]

Hernberg, R.

D. M. Li, R. Hernberg, T. Mäntylä, “Diamond nucleation under high CH4 concentration and high filament temperature,” Diamond Rel. Mater. 7, 188–192 (1998).
[CrossRef]

D. M. Li, T. Mäntylä, R. Hernberg, J. Levoska, “Diamond deposition by coiled and grid filaments using high methane concentrations,” Diamond Rel. Mater. 5, 350–353 (1996).
[CrossRef]

J. Larjo, J. Walewski, R. Hernberg, “Atomic hydrogen concentration mapping in thermal induction plasma CVD,” Appl. Phys. B (accepted for publication).

Hino, M.

S. Matsumoto, M. Hino, T. Kobayashi, “Synthesis of diamond films in a RF induction thermal plasma,” Appl. Phys. Lett. 51, 737–739 (1987).
[CrossRef]

Hwang, J.

J. Hwang, K. Zhang, B. S. Kwak, A. Erbil, “Growth of textured diamond films on Si(100) by C2H2/O2 flame method,” J. Mater. Res. 5, 2334–2336 (1990).
[CrossRef]

Jansen, F.

F. Jansen, M. A. Machonkin, D. E. Kuhman, “The deposition of diamond films by filament techniques,” J. Vac. Sci. Technol. A 8, 3785–3790 (1990).
[CrossRef]

Jensen, E.

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

Kajiwara, T.

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Klages, C.-P.

L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schäfer, C.-P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

Klein-Douwel, R. J. H.

R. J. H. Klein-Douwel, J. ter Meulen, “Spatial distributions of atomic hydrogen and C2 in an oxyacetylene flame in relation to diamond growth,” J. Appl. Phys. 83, 4734–4745 (1998).
[CrossRef]

Kobayashi, T.

S. Matsumoto, M. Hino, T. Kobayashi, “Synthesis of diamond films in a RF induction thermal plasma,” Appl. Phys. Lett. 51, 737–739 (1987).
[CrossRef]

Kohse-Höinghaus, K.

L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schäfer, C.-P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

Kuhman, D. E.

F. Jansen, M. A. Machonkin, D. E. Kuhman, “The deposition of diamond films by filament techniques,” J. Vac. Sci. Technol. A 8, 3785–3790 (1990).
[CrossRef]

Kwak, B. S.

J. Hwang, K. Zhang, B. S. Kwak, A. Erbil, “Growth of textured diamond films on Si(100) by C2H2/O2 flame method,” J. Mater. Res. 5, 2334–2336 (1990).
[CrossRef]

Larjo, J.

J. Larjo, J. Walewski, R. Hernberg, “Atomic hydrogen concentration mapping in thermal induction plasma CVD,” Appl. Phys. B (accepted for publication).

Levoska, J.

D. M. Li, T. Mäntylä, R. Hernberg, J. Levoska, “Diamond deposition by coiled and grid filaments using high methane concentrations,” Diamond Rel. Mater. 5, 350–353 (1996).
[CrossRef]

Li, D. M.

D. M. Li, R. Hernberg, T. Mäntylä, “Diamond nucleation under high CH4 concentration and high filament temperature,” Diamond Rel. Mater. 7, 188–192 (1998).
[CrossRef]

D. M. Li, T. Mäntylä, R. Hernberg, J. Levoska, “Diamond deposition by coiled and grid filaments using high methane concentrations,” Diamond Rel. Mater. 5, 350–353 (1996).
[CrossRef]

Luggenhölscher, D.

L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
[CrossRef]

Machonkin, M. A.

F. Jansen, M. A. Machonkin, D. E. Kuhman, “The deposition of diamond films by filament techniques,” J. Vac. Sci. Technol. A 8, 3785–3790 (1990).
[CrossRef]

Maeda, M.

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Mäntylä, T.

D. M. Li, R. Hernberg, T. Mäntylä, “Diamond nucleation under high CH4 concentration and high filament temperature,” Diamond Rel. Mater. 7, 188–192 (1998).
[CrossRef]

D. M. Li, T. Mäntylä, R. Hernberg, J. Levoska, “Diamond deposition by coiled and grid filaments using high methane concentrations,” Diamond Rel. Mater. 5, 350–353 (1996).
[CrossRef]

Matsumoto, S.

S. Matsumoto, M. Hino, T. Kobayashi, “Synthesis of diamond films in a RF induction thermal plasma,” Appl. Phys. Lett. 51, 737–739 (1987).
[CrossRef]

Meier, U.

L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schäfer, C.-P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

Miyazaki, K.

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Muaroka, K.

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Okada, T.

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Schäfer, L.

L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, L. Schäfer, C.-P. Klages, “Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low-pressure H2 environment,” Appl. Opt. 29, 4993–4999 (1990).
[CrossRef] [PubMed]

Schultz-von der Gathen, V.

L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
[CrossRef]

Spear, K. E.

M. Frenklach, K. E. Spear, “Growth mechanism of vapor-deposited diamond,” J. Mater. Res. 3, 133–140 (1988).
[CrossRef]

ter Meulen, J.

R. J. H. Klein-Douwel, J. ter Meulen, “Spatial distributions of atomic hydrogen and C2 in an oxyacetylene flame in relation to diamond growth,” J. Appl. Phys. 83, 4734–4745 (1998).
[CrossRef]

Uchino, K.

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Vestyck, D. J.

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

Walewski, J.

J. Larjo, J. Walewski, R. Hernberg, “Atomic hydrogen concentration mapping in thermal induction plasma CVD,” Appl. Phys. B (accepted for publication).

Zhang, K.

J. Hwang, K. Zhang, B. S. Kwak, A. Erbil, “Growth of textured diamond films on Si(100) by C2H2/O2 flame method,” J. Mater. Res. 5, 2334–2336 (1990).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Matsumoto, M. Hino, T. Kobayashi, “Synthesis of diamond films in a RF induction thermal plasma,” Appl. Phys. Lett. 51, 737–739 (1987).
[CrossRef]

L. Schäfer, C.-P. Klages, U. Meier, K. Kohse-Höinghaus, “Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond,” Appl. Phys. Lett. 58, 571–573 (1991).
[CrossRef]

Diamond Rel. Mater. (2)

D. M. Li, T. Mäntylä, R. Hernberg, J. Levoska, “Diamond deposition by coiled and grid filaments using high methane concentrations,” Diamond Rel. Mater. 5, 350–353 (1996).
[CrossRef]

D. M. Li, R. Hernberg, T. Mäntylä, “Diamond nucleation under high CH4 concentration and high filament temperature,” Diamond Rel. Mater. 7, 188–192 (1998).
[CrossRef]

J. Appl. Phys. (5)

D. G. Goodwin, “Scaling laws in diamond chemical vapor deposition. II. Atomic hydrogen transport,” J. Appl. Phys. 74, 6895–6923 (1993).
[CrossRef]

R. J. H. Klein-Douwel, J. ter Meulen, “Spatial distributions of atomic hydrogen and C2 in an oxyacetylene flame in relation to diamond growth,” J. Appl. Phys. 83, 4734–4745 (1998).
[CrossRef]

L. Chérigier, U. Czarnetski, D. Luggenhölscher, V. Schultz-von der Gathen, H. Döbele, “Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging,” J. Appl. Phys. 85, 696–702 (1999).
[CrossRef]

L. L. Conell, J. W. Fling, H.-N. Chu, D. J. Vestyck, E. Jensen, J. E. Butler, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond,” J. Appl. Phys. 78, 3622–3634 (1995).
[CrossRef]

D. G. Goodwin, “Scaling laws for diamond chemical vapor deposition. I. Diamond surface chemistry,” J. Appl. Phys. 74, 6888–6894 (1993).
[CrossRef]

J. Mater. Res. (2)

M. Frenklach, K. E. Spear, “Growth mechanism of vapor-deposited diamond,” J. Mater. Res. 3, 133–140 (1988).
[CrossRef]

J. Hwang, K. Zhang, B. S. Kwak, A. Erbil, “Growth of textured diamond films on Si(100) by C2H2/O2 flame method,” J. Mater. Res. 5, 2334–2336 (1990).
[CrossRef]

J. Vac. Sci. Technol. A (2)

F. Jansen, M. A. Machonkin, D. E. Kuhman, “The deposition of diamond films by filament techniques,” J. Vac. Sci. Technol. A 8, 3785–3790 (1990).
[CrossRef]

K. Miyazaki, T. Kajiwara, K. Uchino, K. Muaroka, T. Okada, M. Maeda, “Laser-induced dissociation of molecules during measurements of hydrogen atoms in processing plasmas using two-photon laser-induced fluorescence,” J. Vac. Sci. Technol. A 14, 125–131 (1996).
[CrossRef]

Other (1)

J. Larjo, J. Walewski, R. Hernberg, “Atomic hydrogen concentration mapping in thermal induction plasma CVD,” Appl. Phys. B (accepted for publication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two-dimensional measurement setup.

Fig. 2
Fig. 2

Typical two-dimensional signal distribution.

Fig. 3
Fig. 3

Samples of lateral signal profiles that are close to the substrate.

Fig. 4
Fig. 4

Results of diamond-film growth on (a) the substrate center and (b) the substrate edge. The resolution scale is 10 µm.

Fig. 5
Fig. 5

Vertical LIF profiles obtained under different filament temperatures.

Fig. 6
Fig. 6

Vertical LIF profiles obtained under different gas pressures.

Fig. 7
Fig. 7

Vertical LIF profiles obtained under different CH4 input amounts.

Tables (1)

Tables Icon

Table 1 Experimental Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CH4+HCH3+H2,

Metrics