Abstract

Optical-flow (OF) velocimetry is based on extracting velocity information from two-dimensional scalar images and represents an unseeded alternative to particle-image velocimetry in turbulent flows. The performance of the technique is examined by direct comparison with simultaneous particle-image velocimetry in both an isothermal turbulent flow and a turbulent flame by use of acetone–OH laser-induced fluorescence. Two representative region-based correlation OF algorithms are applied to assess the general accuracy of the technique. Systematic discrepancies between particle-imaging velocimetry and OF velocimetry are identified with increasing distance from the center line, indicating potential limitations of the current OF techniques. Directional errors are present at all radial positions, with differences in excess of 10° being typical. An experimental measurement setup is described that allows the simultaneous measurement of Mie scattering from seed particles and laser-induced fluorescence on the same CCD camera at two distinct times for validation studies.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Frank, K. M. Lyons, M. B. Long, “Simultaneous scalar–velocity field measurements in turbulent gas-phase flows,” Combust. Flame 107, 1–12 (1996).
    [CrossRef]
  2. S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
    [CrossRef]
  3. J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent nonpremixed flames of methane,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1007–1014.
  4. S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
    [CrossRef]
  5. B. K. P. Horn, B. G. Schunk, “Determination of optical flow,” Memo 572 (Artificial Intelligence Laboratory, MIT, Cambridge, Mass., 1980).
  6. A. Singh, Optic Flow Computation: A Unified Perspective (IEEE Computer Society, Los Alamitos, Calif., 1990).
  7. A. M. Waxman, J. H. Duncan, “Binocular image flows: steps toward stereo-motion fusion,” PAMI 8, 715–729 (1986).
    [CrossRef]
  8. P. T. Tokumaru, P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1–15 (1995).
  9. J. L. Barron, D. J. Fleet, S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vision 12, 43–77 (1994).
    [CrossRef]
  10. M. Komiyama, A. Miyafuji, T. Takagi, “Flamelet behavior in a turbulent diffusion flame measured by Rayleigh scattering image velocimetry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 339–346.
  11. G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
    [CrossRef]
  12. W. J. A. Dahm, L. K. Su, K. B. Southerland, “A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurement in turbulent flows,” Phys. Fluids A 4, 2191–2206 (1992).
    [CrossRef]
  13. G. M. Quénot, J. Pakleza, T. A. Kowalewski, “Particle image velocimetry with optical flow,” Exp. Fluids 25, 177–189 (1998).
    [CrossRef]
  14. G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Application of gaseous image velocimetry to laminar, unsteady flames,” in Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (Interdisziplinäres Zentrum für Wissenschaftliches Rechnan, University of Heidelburg, Heidelburg, Germany, 1999), Paper no. 184.
  15. G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Gas-phase velocity field measurement in sprays without particle seeding,” Exp. Fluids 29, 238–246 (2000).
    [CrossRef]
  16. P. Anandan, “Measuring visual motion from image sequences,” Ph.D. dissertation (Department of Computer and Information Science, University of Massachusetts, Amherst, Mass., 1987).
  17. P. Anandan, “A computational framework and an algorithm for the measurement of visual motion,” Int. J. Comput. Vision 2, 283–310 (1989).
    [CrossRef]
  18. P. R. Beaudet, “Rotationally invariant image operators,” Proc. Int. Conf. Patt. Recog.579–583 (1978).
  19. A. J. Pearlstein, B. N. Carpenter, “On the determination of solenoidal or compressible velocity fields from measurements of passive or reactive scalars,” Phys. Fluids 7, 754–763 (1995).
    [CrossRef]
  20. J. Fielding, M. B. Long, “Optical flow velocimetry validation images,” http://cld3.eng.yale.edu/fielding .

2000 (1)

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Gas-phase velocity field measurement in sprays without particle seeding,” Exp. Fluids 29, 238–246 (2000).
[CrossRef]

1998 (2)

G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
[CrossRef]

G. M. Quénot, J. Pakleza, T. A. Kowalewski, “Particle image velocimetry with optical flow,” Exp. Fluids 25, 177–189 (1998).
[CrossRef]

1997 (1)

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

1996 (1)

J. H. Frank, K. M. Lyons, M. B. Long, “Simultaneous scalar–velocity field measurements in turbulent gas-phase flows,” Combust. Flame 107, 1–12 (1996).
[CrossRef]

1995 (2)

P. T. Tokumaru, P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1–15 (1995).

A. J. Pearlstein, B. N. Carpenter, “On the determination of solenoidal or compressible velocity fields from measurements of passive or reactive scalars,” Phys. Fluids 7, 754–763 (1995).
[CrossRef]

1994 (2)

J. L. Barron, D. J. Fleet, S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vision 12, 43–77 (1994).
[CrossRef]

S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

1992 (1)

W. J. A. Dahm, L. K. Su, K. B. Southerland, “A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurement in turbulent flows,” Phys. Fluids A 4, 2191–2206 (1992).
[CrossRef]

1989 (1)

P. Anandan, “A computational framework and an algorithm for the measurement of visual motion,” Int. J. Comput. Vision 2, 283–310 (1989).
[CrossRef]

1986 (1)

A. M. Waxman, J. H. Duncan, “Binocular image flows: steps toward stereo-motion fusion,” PAMI 8, 715–729 (1986).
[CrossRef]

1978 (1)

P. R. Beaudet, “Rotationally invariant image operators,” Proc. Int. Conf. Patt. Recog.579–583 (1978).

Anandan, P.

P. Anandan, “A computational framework and an algorithm for the measurement of visual motion,” Int. J. Comput. Vision 2, 283–310 (1989).
[CrossRef]

P. Anandan, “Measuring visual motion from image sequences,” Ph.D. dissertation (Department of Computer and Information Science, University of Massachusetts, Amherst, Mass., 1987).

Andresen, P.

G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
[CrossRef]

Barron, J. L.

J. L. Barron, D. J. Fleet, S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vision 12, 43–77 (1994).
[CrossRef]

Bartelheimer, J.

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Gas-phase velocity field measurement in sprays without particle seeding,” Exp. Fluids 29, 238–246 (2000).
[CrossRef]

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Application of gaseous image velocimetry to laminar, unsteady flames,” in Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (Interdisziplinäres Zentrum für Wissenschaftliches Rechnan, University of Heidelburg, Heidelburg, Germany, 1999), Paper no. 184.

Beauchemin, S. S.

J. L. Barron, D. J. Fleet, S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vision 12, 43–77 (1994).
[CrossRef]

Beaudet, P. R.

P. R. Beaudet, “Rotationally invariant image operators,” Proc. Int. Conf. Patt. Recog.579–583 (1978).

Bilger, R. W.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Carpenter, B. N.

A. J. Pearlstein, B. N. Carpenter, “On the determination of solenoidal or compressible velocity fields from measurements of passive or reactive scalars,” Phys. Fluids 7, 754–763 (1995).
[CrossRef]

Dahm, W. J. A.

W. J. A. Dahm, L. K. Su, K. B. Southerland, “A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurement in turbulent flows,” Phys. Fluids A 4, 2191–2206 (1992).
[CrossRef]

Diekmann, A.

G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
[CrossRef]

Dimotakis, P. E.

P. T. Tokumaru, P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1–15 (1995).

Duncan, J. H.

A. M. Waxman, J. H. Duncan, “Binocular image flows: steps toward stereo-motion fusion,” PAMI 8, 715–729 (1986).
[CrossRef]

Fielding, J.

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent nonpremixed flames of methane,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1007–1014.

Finke, H.

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Gas-phase velocity field measurement in sprays without particle seeding,” Exp. Fluids 29, 238–246 (2000).
[CrossRef]

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Application of gaseous image velocimetry to laminar, unsteady flames,” in Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (Interdisziplinäres Zentrum für Wissenschaftliches Rechnan, University of Heidelburg, Heidelburg, Germany, 1999), Paper no. 184.

Fleet, D. J.

J. L. Barron, D. J. Fleet, S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vision 12, 43–77 (1994).
[CrossRef]

Frank, J. H.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

J. H. Frank, K. M. Lyons, M. B. Long, “Simultaneous scalar–velocity field measurements in turbulent gas-phase flows,” Combust. Flame 107, 1–12 (1996).
[CrossRef]

S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Graber, A.

G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
[CrossRef]

Grünefeld, G.

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Gas-phase velocity field measurement in sprays without particle seeding,” Exp. Fluids 29, 238–246 (2000).
[CrossRef]

G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
[CrossRef]

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Application of gaseous image velocimetry to laminar, unsteady flames,” in Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (Interdisziplinäres Zentrum für Wissenschaftliches Rechnan, University of Heidelburg, Heidelburg, Germany, 1999), Paper no. 184.

Horn, B. K. P.

B. K. P. Horn, B. G. Schunk, “Determination of optical flow,” Memo 572 (Artificial Intelligence Laboratory, MIT, Cambridge, Mass., 1980).

Komiyama, M.

M. Komiyama, A. Miyafuji, T. Takagi, “Flamelet behavior in a turbulent diffusion flame measured by Rayleigh scattering image velocimetry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 339–346.

Kowalewski, T. A.

G. M. Quénot, J. Pakleza, T. A. Kowalewski, “Particle image velocimetry with optical flow,” Exp. Fluids 25, 177–189 (1998).
[CrossRef]

Krüger, S.

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Gas-phase velocity field measurement in sprays without particle seeding,” Exp. Fluids 29, 238–246 (2000).
[CrossRef]

G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
[CrossRef]

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Application of gaseous image velocimetry to laminar, unsteady flames,” in Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (Interdisziplinäres Zentrum für Wissenschaftliches Rechnan, University of Heidelburg, Heidelburg, Germany, 1999), Paper no. 184.

Long, M. B.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

J. H. Frank, K. M. Lyons, M. B. Long, “Simultaneous scalar–velocity field measurements in turbulent gas-phase flows,” Combust. Flame 107, 1–12 (1996).
[CrossRef]

S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent nonpremixed flames of methane,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1007–1014.

Lyons, K. M.

J. H. Frank, K. M. Lyons, M. B. Long, “Simultaneous scalar–velocity field measurements in turbulent gas-phase flows,” Combust. Flame 107, 1–12 (1996).
[CrossRef]

S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Marran, D. F.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

Miyafuji, A.

M. Komiyama, A. Miyafuji, T. Takagi, “Flamelet behavior in a turbulent diffusion flame measured by Rayleigh scattering image velocimetry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 339–346.

Pakleza, J.

G. M. Quénot, J. Pakleza, T. A. Kowalewski, “Particle image velocimetry with optical flow,” Exp. Fluids 25, 177–189 (1998).
[CrossRef]

Pearlstein, A. J.

A. J. Pearlstein, B. N. Carpenter, “On the determination of solenoidal or compressible velocity fields from measurements of passive or reactive scalars,” Phys. Fluids 7, 754–763 (1995).
[CrossRef]

Quénot, G. M.

G. M. Quénot, J. Pakleza, T. A. Kowalewski, “Particle image velocimetry with optical flow,” Exp. Fluids 25, 177–189 (1998).
[CrossRef]

Schaffer, A. M.

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent nonpremixed flames of methane,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1007–1014.

Schunk, B. G.

B. K. P. Horn, B. G. Schunk, “Determination of optical flow,” Memo 572 (Artificial Intelligence Laboratory, MIT, Cambridge, Mass., 1980).

Singh, A.

A. Singh, Optic Flow Computation: A Unified Perspective (IEEE Computer Society, Los Alamitos, Calif., 1990).

Southerland, K. B.

W. J. A. Dahm, L. K. Su, K. B. Southerland, “A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurement in turbulent flows,” Phys. Fluids A 4, 2191–2206 (1992).
[CrossRef]

Stårner, S. H.

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Su, L. K.

W. J. A. Dahm, L. K. Su, K. B. Southerland, “A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurement in turbulent flows,” Phys. Fluids A 4, 2191–2206 (1992).
[CrossRef]

Takagi, T.

M. Komiyama, A. Miyafuji, T. Takagi, “Flamelet behavior in a turbulent diffusion flame measured by Rayleigh scattering image velocimetry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 339–346.

Tokumaru, P. T.

P. T. Tokumaru, P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1–15 (1995).

Waxman, A. M.

A. M. Waxman, J. H. Duncan, “Binocular image flows: steps toward stereo-motion fusion,” PAMI 8, 715–729 (1986).
[CrossRef]

Combust. Flame (2)

J. H. Frank, K. M. Lyons, M. B. Long, “Simultaneous scalar–velocity field measurements in turbulent gas-phase flows,” Combust. Flame 107, 1–12 (1996).
[CrossRef]

S. H. Stårner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Combust. Sci. Technol. (2)

S. H. Stårner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

G. Grünefeld, A. Graber, A. Diekmann, S. Krüger, P. Andresen, “Measurement system for simultaneous species densities, temperature, and velocity double-pulse measurements in turbulent hydrogen flames,” Combust. Sci. Technol. 135, 135–152 (1998).
[CrossRef]

Exp. Fluids (3)

P. T. Tokumaru, P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1–15 (1995).

G. M. Quénot, J. Pakleza, T. A. Kowalewski, “Particle image velocimetry with optical flow,” Exp. Fluids 25, 177–189 (1998).
[CrossRef]

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Gas-phase velocity field measurement in sprays without particle seeding,” Exp. Fluids 29, 238–246 (2000).
[CrossRef]

Int. J. Comput. Vision (2)

P. Anandan, “A computational framework and an algorithm for the measurement of visual motion,” Int. J. Comput. Vision 2, 283–310 (1989).
[CrossRef]

J. L. Barron, D. J. Fleet, S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vision 12, 43–77 (1994).
[CrossRef]

PAMI (1)

A. M. Waxman, J. H. Duncan, “Binocular image flows: steps toward stereo-motion fusion,” PAMI 8, 715–729 (1986).
[CrossRef]

Phys. Fluids (1)

A. J. Pearlstein, B. N. Carpenter, “On the determination of solenoidal or compressible velocity fields from measurements of passive or reactive scalars,” Phys. Fluids 7, 754–763 (1995).
[CrossRef]

Phys. Fluids A (1)

W. J. A. Dahm, L. K. Su, K. B. Southerland, “A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurement in turbulent flows,” Phys. Fluids A 4, 2191–2206 (1992).
[CrossRef]

Proc. Int. Conf. Patt. Recog. (1)

P. R. Beaudet, “Rotationally invariant image operators,” Proc. Int. Conf. Patt. Recog.579–583 (1978).

Other (7)

J. Fielding, M. B. Long, “Optical flow velocimetry validation images,” http://cld3.eng.yale.edu/fielding .

P. Anandan, “Measuring visual motion from image sequences,” Ph.D. dissertation (Department of Computer and Information Science, University of Massachusetts, Amherst, Mass., 1987).

G. Grünefeld, J. Bartelheimer, H. Finke, S. Krüger, “Application of gaseous image velocimetry to laminar, unsteady flames,” in Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (Interdisziplinäres Zentrum für Wissenschaftliches Rechnan, University of Heidelburg, Heidelburg, Germany, 1999), Paper no. 184.

M. Komiyama, A. Miyafuji, T. Takagi, “Flamelet behavior in a turbulent diffusion flame measured by Rayleigh scattering image velocimetry,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 339–346.

J. Fielding, A. M. Schaffer, M. B. Long, “Three-scalar imaging in turbulent nonpremixed flames of methane,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1007–1014.

B. K. P. Horn, B. G. Schunk, “Determination of optical flow,” Memo 572 (Artificial Intelligence Laboratory, MIT, Cambridge, Mass., 1980).

A. Singh, Optic Flow Computation: A Unified Perspective (IEEE Computer Society, Los Alamitos, Calif., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup A used for simultaneous acetone LIF and PIV measurements in nonreacting flows.

Fig. 2
Fig. 2

Experimental setup B use for simultaneous acetone–OH LIF and PIV measurements in reacting flows.

Fig. 3
Fig. 3

Mean velocities [PIV (×), F-OF (○), K-OF (□)] and angular deviations [F-OF (●), K-OF (■)] for the case of a nonreacting flow as measured by setup A and plotted as a function of the radial position r/ D.

Fig. 4
Fig. 4

Mean-difference velocity [F-OF (○), K-OF (□)] computed with expression (1) and displayed as a percentage of the local mean PIV velocity magnitude for the case of a nonreacting flow as measured with setup A.

Fig. 5
Fig. 5

Scalar fluorescence images shown at two times: (a) t 0 and (b) t 0 + 57 µs. The white-outlined boxes correspond to the regions used for Fig. 7.

Fig. 6
Fig. 6

Results of the F-OF, the K-OF, and the PIV vector-field determinations. The boxes indicate the regions used for Fig. 7.

Fig. 7
Fig. 7

Correlation maps for the regions indicated by the boxes in Figs. 5 and 6: (a) the PIV map showing a discrete peak and (b) the broader ridgelike feature of the K-OF.

Fig. 8
Fig. 8

Mean velocities [PIV (×), F-OF (○), K-OF (□)] and angular deviations [F-OF (●), K-OF (■)] for the case of a reacting flow as measured by setup B and plotted as a function of the radial position r/ D.

Fig. 9
Fig. 9

Mean-difference velocity [F-OF (○), K-OF (□)] computed with expression (1) and displayed as a percentage of the local mean PIV velocity magnitude for the case of a reacting flow as measured with setup B.

Fig. 10
Fig. 10

Scalar fluorescence images for the flame case with regions of OH and acetone marked. The surface plot indicates the relatively weak OH florescence signal, which results from the broad linewidth of the pump laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ve=1Ni=1N|VP-VOF|,
θe=1Ni=1N|θp-θOF|,

Metrics