Abstract

Two-dimensional temperature fields are measured in lean and sooting flames by means of two-color laser-induced fluorescence (LIF) imaging that uses seeded NO. Vibrational thermometry is performed by the probing of different vibrational ground-state levels. Spectral properties of the excited transitions within the A 2Σ+X 2Π system are well known from previous studies. The energy difference of 1974 cm-1 between the (0,0)Q 1 + P 21(33.5) and the (0,2)O12(5.5) lines offers great sensitivity in the temperature range that is relevant for combustion processes. Excitation is possible by use of a tunable KrF excimer laser on its fundamental (248-nm) and Raman shifted (in H2, 225-nm) wavelengths. An excitation scheme for instantaneous two-line measurements by use of a single laser is developed. The possibility of single-shot measurements is discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Gross, R. L. McKenzie, “Single-pulse gas thermometry at low temperatures using two-photon laser-induced fluorescence in NO–N2 mixtures,” Opt. Lett. 8, 368–370 (1983).
    [CrossRef] [PubMed]
  2. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  3. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  4. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981).
    [CrossRef] [PubMed]
  5. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ*(ν = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
    [CrossRef]
  6. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
    [CrossRef] [PubMed]
  7. M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
    [CrossRef]
  8. R. W. Dibble, R. F. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).
  9. S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000).
    [CrossRef]
  10. S. Schraml, S. Dankers, S. Will, A. Leipertz, “Laser-induced incandescence (LII) as a powerful tool for the determination of soot mass concentration and primary particle size in combustion systems,” in Proceedings of the Joint Meeting of the British, German, and French Sections of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1999), pp. 121–123.
  11. G. Zizak, N. Omenetto, J. D. Winefordner, “Laser-excited atomic fluorescence techniques for temperature measurements in flames: a summary,” Opt. Eng. 23, 749–755 (1984).
  12. C. F. Kaminski, J. Engström, M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using two-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).
  13. A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
    [CrossRef]
  14. J. M. Seitzmann, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
    [CrossRef]
  15. M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
    [CrossRef]
  16. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
    [CrossRef] [PubMed]
  17. A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).
  18. T. Ni-Imi, T. Fujimoto, N. Shimizu, “Method for planar measurement of temperature in compressible flow using two-line laser-induced iodine fluorescence,” Opt. Lett. 15, 918–920 (1990).
    [CrossRef] [PubMed]
  19. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
    [CrossRef]
  20. M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
    [CrossRef] [PubMed]
  21. S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).
  22. H. Zacharias, J. B. Halpern, K. H. Welge, “Two-photon excitation of NO (A2Σ+; ν′ = 0, 1, 2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
    [CrossRef]
  23. G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Lett. 62, 402–404 (1979).
    [CrossRef]
  24. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2Σ+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
    [CrossRef]
  25. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
    [CrossRef]
  26. F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).
  27. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
    [CrossRef] [PubMed]
  28. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
    [CrossRef]
  29. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
  30. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).
  31. S. L. Bragg, J. W. Brault, W. H. Smith, “Line position and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
    [CrossRef]
  32. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, 2nd ed. (Krieger, Malabar, Fla., 1950).
  33. W. Bessler, C. Schulz are preparing a manuscript entitled “Foreign gas effects on the hydrogen Raman shift frequency” to be submitted to Applied Optics.
  34. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  35. A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  36. M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
    [CrossRef]
  37. M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  38. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
  39. C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
    [CrossRef]
  40. P. Lallemand, P. Simova, “Stimulated Raman spectroscopy in hydrogen gas,” J. Mol. Spectrosc. 26, 262–276 (1968).
    [CrossRef]
  41. L. D. Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. v.d. Bergh, “Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
    [CrossRef] [PubMed]
  42. A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
    [CrossRef]
  43. F. Hildenbrand, Physikalisch-Chemisches Institut, University of Heidelberg, Im Neuenheimer Feld 253, 69124 Heidelberg, Germany (personal communication, 31January2000).

2000

S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

1999

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

1998

C. F. Kaminski, J. Engström, M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using two-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

1997

1996

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

1995

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

1994

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

1993

1992

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

1990

1987

1986

1985

1984

G. Zizak, N. Omenetto, J. D. Winefordner, “Laser-excited atomic fluorescence techniques for temperature measurements in flames: a summary,” Opt. Eng. 23, 749–755 (1984).

1983

1982

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2Σ+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

S. L. Bragg, J. W. Brault, W. H. Smith, “Line position and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

1981

R. W. Dibble, R. F. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).

R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981).
[CrossRef] [PubMed]

1979

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Lett. 62, 402–404 (1979).
[CrossRef]

1976

H. Zacharias, J. B. Halpern, K. H. Welge, “Two-photon excitation of NO (A2Σ+; ν′ = 0, 1, 2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

1968

P. Lallemand, P. Simova, “Stimulated Raman spectroscopy in hydrogen gas,” J. Mol. Spectrosc. 26, 262–276 (1968).
[CrossRef]

Aldén, M.

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

C. F. Kaminski, J. Engström, M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using two-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

Andersson, Ö.

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

Arnold, A.

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Berg, P. A.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

Bergh, H. v.d.

Bessler, W.

W. Bessler, C. Schulz are preparing a manuscript entitled “Foreign gas effects on the hydrogen Raman shift frequency” to be submitted to Applied Optics.

Böckle, S.

S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000).
[CrossRef]

Bouché, T.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Bragg, S. L.

S. L. Bragg, J. W. Brault, W. H. Smith, “Line position and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

Brault, J. W.

S. L. Bragg, J. W. Brault, W. H. Smith, “Line position and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

Bräumer, A.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

Brockhinke, A.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Calpini, B.

Cattolica, R.

Chang, A. Y.

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Crosley, D. R.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

Dankers, S.

S. Schraml, S. Dankers, S. Will, A. Leipertz, “Laser-induced incandescence (LII) as a powerful tool for the determination of soot mass concentration and primary particle size in combustion systems,” in Proceedings of the Joint Meeting of the British, German, and French Sections of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1999), pp. 121–123.

Decker, M.

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

Dibble, R. W.

R. W. Dibble, R. F. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).

DiRosa, M. D.

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Dreizler, A.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

Drewes, V.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Einecke, S.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

Engström, J.

C. F. Kaminski, J. Engström, M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using two-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

Fujimoto, T.

Grisch, F.

Gross, K. P.

Grossmann, F.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Halpern, J. B.

H. Zacharias, J. B. Halpern, K. H. Welge, “Two-photon excitation of NO (A2Σ+; ν′ = 0, 1, 2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

Hanson, R. K.

M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef] [PubMed]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
[CrossRef] [PubMed]

J. M. Seitzmann, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

Harrington, J. E.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

Hartlieb, A. T.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Haydon, S. C.

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Lett. 62, 402–404 (1979).
[CrossRef]

Heinze, J.

Heitzmann, T.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Hentschel, W.

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, 2nd ed. (Krieger, Malabar, Fla., 1950).

Hildenbrand, F.

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

F. Hildenbrand, Physikalisch-Chemisches Institut, University of Heidelberg, Im Neuenheimer Feld 253, 69124 Heidelberg, Germany (personal communication, 31January2000).

Hirano, A.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Hollenbach, R. F.

R. W. Dibble, R. F. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).

Jeffries, J. B.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

Josefsson, G.

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

Kaminski, C. F.

C. F. Kaminski, J. Engström, M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using two-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

Kazenwadel, J.

S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000).
[CrossRef]

Keller, F.

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

Ketterle, W.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Kohse-Höinghaus, K.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Kunzelmann, T.

S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000).
[CrossRef]

Kychakoff, G.

Lallemand, P.

P. Lallemand, P. Simova, “Stimulated Raman spectroscopy in hydrogen gas,” J. Mol. Spectrosc. 26, 262–276 (1968).
[CrossRef]

Lange, B.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Laudenslager, J. B.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2Σ+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Laurendeau, N. M.

Lee, M. P.

Leipertz, A.

S. Schraml, S. Dankers, S. Will, A. Leipertz, “Laser-induced incandescence (LII) as a powerful tool for the determination of soot mass concentration and primary particle size in combustion systems,” in Proceedings of the Joint Meeting of the British, German, and French Sections of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1999), pp. 121–123.

Lucht, R. P.

Luque, J.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

Maas, U.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

Magnusson, I.

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

Maly, R.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

Maly, R. R.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

McDermid, I. S.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2Σ+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

McIntosh, A. I.

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Lett. 62, 402–404 (1979).
[CrossRef]

McKenzie, R. L.

McMillin, B. K.

Meier, U.

Meier, U. E.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

Mitev, V.

Monkhouse, P.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Monkhouse, P. B.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Ni-Imi, T.

Nutt, G. F.

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Lett. 62, 402–404 (1979).
[CrossRef]

Omenetto, N.

G. Zizak, N. Omenetto, J. D. Winefordner, “Laser-excited atomic fluorescence techniques for temperature measurements in flames: a summary,” Opt. Eng. 23, 749–755 (1984).

Palmer, J. L.

Paul, P. H.

Ridder, M.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Roller, A.

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

Sakuraya, T.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Schiessl, R.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

Schiff, G.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Schindler, K.-P.

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

Schoulepnikoff, L. D.

Schraml, S.

S. Schraml, S. Dankers, S. Will, A. Leipertz, “Laser-induced incandescence (LII) as a powerful tool for the determination of soot mass concentration and primary particle size in combustion systems,” in Proceedings of the Joint Meeting of the British, German, and French Sections of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1999), pp. 121–123.

Schulz, C.

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000).
[CrossRef]

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

W. Bessler, C. Schulz are preparing a manuscript entitled “Foreign gas effects on the hydrogen Raman shift frequency” to be submitted to Applied Optics.

Seitzman, J. M.

Seitzmann, J. M.

J. M. Seitzmann, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
[CrossRef]

Shimizu, N.

Sick, V.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

Simeonov, V.

Simova, P.

P. Lallemand, P. Simova, “Stimulated Raman spectroscopy in hydrogen gas,” J. Mol. Spectrosc. 26, 262–276 (1968).
[CrossRef]

Smith, G. P.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

Smith, W. H.

S. L. Bragg, J. W. Brault, W. H. Smith, “Line position and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

Stricker, W.

Sweeney, D. W.

Takeshita, Y.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Tamura, M.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

Thurber, M. C.

Tsujishita, M.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Vyrodov, A. O.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

Wagner, E.

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

Welge, K. H.

H. Zacharias, J. B. Halpern, K. H. Welge, “Two-photon excitation of NO (A2Σ+; ν′ = 0, 1, 2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

Will, S.

S. Schraml, S. Dankers, S. Will, A. Leipertz, “Laser-induced incandescence (LII) as a powerful tool for the determination of soot mass concentration and primary particle size in combustion systems,” in Proceedings of the Joint Meeting of the British, German, and French Sections of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1999), pp. 121–123.

Winefordner, J. D.

G. Zizak, N. Omenetto, J. D. Winefordner, “Laser-excited atomic fluorescence techniques for temperature measurements in flames: a summary,” Opt. Eng. 23, 749–755 (1984).

Wolfrum, J.

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Yip, B.

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

Yokoo, M.

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Zacharias, H.

H. Zacharias, J. B. Halpern, K. H. Welge, “Two-photon excitation of NO (A2Σ+; ν′ = 0, 1, 2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

Zahn, M.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

Zizak, G.

G. Zizak, N. Omenetto, J. D. Winefordner, “Laser-excited atomic fluorescence techniques for temperature measurements in flames: a summary,” Opt. Eng. 23, 749–755 (1984).

Appl. Opt.

Appl. Phys. B

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998).
[CrossRef]

S. Böckle, J. Kazenwadel, T. Kunzelmann, C. Schulz, “Laser-diagnostic multispecies imaging in strongly swirling natural gas flames,” Appl. Phys. B 71, 741–746 (2000).
[CrossRef]

J. M. Seitzmann, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Astrophys. J.

S. L. Bragg, J. W. Brault, W. H. Smith, “Line position and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

Ber. Bunsenges. Phys. Chem.

A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992).
[CrossRef]

Chem. Phys. Lett.

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

H. Zacharias, J. B. Halpern, K. H. Welge, “Two-photon excitation of NO (A2Σ+; ν′ = 0, 1, 2) and radiation lifetime and quenching measurements,” Chem. Phys. Lett. 43, 41–44 (1976).
[CrossRef]

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Lett. 62, 402–404 (1979).
[CrossRef]

J. Mol. Spectrosc.

P. Lallemand, P. Simova, “Stimulated Raman spectroscopy in hydrogen gas,” J. Mol. Spectrosc. 26, 262–276 (1968).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2Σ+, ν′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

JSME Int. J. Ser. B

M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita, “Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame,” JSME Int. J. Ser. B 42, 119–126 (1999).
[CrossRef]

Opt. Eng.

G. Zizak, N. Omenetto, J. D. Winefordner, “Laser-excited atomic fluorescence techniques for temperature measurements in flames: a summary,” Opt. Eng. 23, 749–755 (1984).

Opt. Lett.

Proc. Combust. Inst.

C. F. Kaminski, J. Engström, M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using two-line atomic fluorescence,” Proc. Combust. Inst. 27, 85–93 (1998).

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentration and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a DI diesel engine,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

R. W. Dibble, R. F. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” Proc. Combust. Inst. 18, 1489–1499 (1981).

SAE (Soc. Automot. Eng.) [Tech. Pap.]

A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Nonintrusive temperature measurements during the compression phase of a DI diesel engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952461, 113–118 (1995).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE (Soc. Automot. Eng.) [Tech. Pap.] 952462, 119–127 (1995).

SAE (Soc. Automot. Eng.) Trans.

F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén, “Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 205–214 (1998).

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schiessl, U. Maas, “Two-dimensional temperature measurements in a SI engine using two-line tracer LIF,” SAE (Soc. Automot. Eng.) Trans. 107, Sec. 3, 1060–1068 (1998).

Other

S. Schraml, S. Dankers, S. Will, A. Leipertz, “Laser-induced incandescence (LII) as a powerful tool for the determination of soot mass concentration and primary particle size in combustion systems,” in Proceedings of the Joint Meeting of the British, German, and French Sections of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1999), pp. 121–123.

F. Hildenbrand, Physikalisch-Chemisches Institut, University of Heidelberg, Im Neuenheimer Feld 253, 69124 Heidelberg, Germany (personal communication, 31January2000).

G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, 2nd ed. (Krieger, Malabar, Fla., 1950).

W. Bessler, C. Schulz are preparing a manuscript entitled “Foreign gas effects on the hydrogen Raman shift frequency” to be submitted to Applied Optics.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulated temperature dependence of the relative LIF signal intensity for the two excited NO transitions. Overlap factors and multiple-line-excitation effects are included in the calculation.

Fig. 2
Fig. 2

(a) Simulated temperature dependence of the two-line LIF ratio R 12 compared with the temperature dependence of the Boltzmann ratio only. (b) Temperature deviations of greater than 5% at combustion-relevant temperatures show the importance of using spectral simulations.

Fig. 3
Fig. 3

Experimental setups for (a) the two-line imaging experiment in which the Pellin–Broca prism is turned to change the excitation wavelength and (b) the simultaneous recording of NO spectra in both the AX(0,0) and the AX(0,2) bands. (c) The overlapping 225- and 248-nm light sheets used for image (a). (d) The position of the unfocused laser beams for spectroscopic measurements with (b). ICCD, image-intensified CCD.

Fig. 4
Fig. 4

Simultaneously acquired NO spectra in the AX(0,0) band (dashed curve) and in the AX(0,2) band (solid curve). The rotational lines for which simultaneous excitation by a single laser is possible are indicated.

Fig. 5
Fig. 5

NO LIF images of the lean (ϕ = 0.91) and the sooting (ϕ = 2.3) Taran burner flames and the resultant vibrational temperature fields.

Fig. 6
Fig. 6

Comparison of the two-line LIF-determined temperatures with the CARS measurements for (a) a horizontal position 14 mm above the burner exit and (b) a horizontal position 19 mm above the burner exit for the lean (ϕ = 0.91) Taran burner flame. PLIF, planar LIF.

Fig. 7
Fig. 7

Comparison of the two-line LIF-determined temperatures for different concentrations of NO seeding of the fresh gases of the lean (ϕ = 0.91) flame. The horizontal temperature profiles were taken at a position 19 mm above the burner exit.

Tables (1)

Tables Icon

Table 1 Comparison of the Temperature Sensitivities of Different NO Two-Line LIF Thermometry Methods

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ILIF  ILaser NNOfBTBik gλp, Tk,j fkj×Akjl Akl+Qkp, T,
R12  ILaser,1fB,1TBik,1gλ,1p, T  fkj,1Akj,1ILaser,2fB,2TBik,2gλ,2p, T  fkj,2Akj,2,
R12  exp-Δ12kT,

Metrics