Abstract

We investigate the accuracy of temperature measurements by coherent anti-Stokes Raman spectroscopy (CARS) of O2 and use measurements taken with N2 CARS and a thermocouple for comparison. Scanning vibrational CARS spectra of O2 and N2 were recorded over a broad range of temperatures: between 294 K and 1900 K in air that was heated in a tube furnace and at approximately 2450 K in a fuel-lean CH4–O2–N2 flame. Temperatures were derived from least-squares fits of simulated and experimental spectra. Both the fundamental vibrational band and the first hot vibrational band were included in fitting. In the case of the tube furnace, the N2 and the O2 CARS temperature measurements agreed to within 3%, and results were similar with the thermocouple; in the flame the agreement was to within 1%. We conclude that, for cases in which O2 is present in sufficient concentrations (≈10% or greater), the accuracy of O2 thermometry is comparable with that of N2.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  2. C. Baukal, “Basic principles,” in Oxygen-Enhanced Combustion, C. Baukal, ed. (CRC Press, Boca Raton, Fla., 1998), Chap. 1.
    [CrossRef]
  3. T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
    [CrossRef]
  4. B. Lavorel, G. Millot, M. Lefebvre, M. Péalat, “Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge,” J. Raman Spectrosc. 19, 375–378 (1988).
    [CrossRef]
  5. M. L. Koszykowski, R. L. Farrow, R. E. Palmer, “Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra,” Opt. Lett. 10, 478–480 (1985).
    [CrossRef] [PubMed]
  6. L. A. Rahn, R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
    [CrossRef]
  7. L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
    [CrossRef]
  8. J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
    [CrossRef]
  9. J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
    [CrossRef]
  10. M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
    [CrossRef]
  11. B. Lavorel, L. Guillot, J. Bonamy, D. Robert, “Collisional Raman linewidths of nitrogen at high temperature (1700–2400 K),” Opt. Lett. 20, 1189–1191 (1995).
    [CrossRef] [PubMed]
  12. T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q-branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
    [CrossRef]
  13. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
    [CrossRef] [PubMed]
  14. P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
    [CrossRef]
  15. L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
    [CrossRef]
  16. R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
    [CrossRef] [PubMed]
  17. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, “Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-Stokes Raman scattering,” Appl. Phys. B 45, 183–190 (1988).
    [CrossRef]
  18. T. Dreier, G. Schiff, “High-temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
    [CrossRef]
  19. G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992).
    [CrossRef]
  20. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
    [CrossRef]
  21. G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
    [CrossRef]
  22. J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for rotational Raman studies,” Opt. Lett. 5, 380–382 (1980).
    [CrossRef] [PubMed]
  23. L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–251 (1979).
    [CrossRef]
  24. R. L. Farrow, R. Trebino, R. E. Palmer, “High-resolution CARS measurements of temperature profiles and pressure in a tungsten lamp,” Appl. Opt. 26, 331–335 (1987).
    [CrossRef] [PubMed]
  25. G. J. Rosasco, W. Lempert, W. S. Hurst, A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2 and CO,” Chem. Phys. Lett. 97, 435–440 (1983).
    [CrossRef]
  26. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  27. S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” NASA rep. 1311 (NASA, Lewis Research Center, Cleveland, Oh., 1994).

1997

1996

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

1995

1994

G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
[CrossRef]

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q-branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

1992

T. Dreier, G. Schiff, “High-temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

1991

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

1990

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

1989

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

1988

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, “Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-Stokes Raman scattering,” Appl. Phys. B 45, 183–190 (1988).
[CrossRef]

B. Lavorel, G. Millot, M. Lefebvre, M. Péalat, “Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge,” J. Raman Spectrosc. 19, 375–378 (1988).
[CrossRef]

1987

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

R. L. Farrow, R. Trebino, R. E. Palmer, “High-resolution CARS measurements of temperature profiles and pressure in a tungsten lamp,” Appl. Opt. 26, 331–335 (1987).
[CrossRef] [PubMed]

1986

1985

1983

G. J. Rosasco, W. Lempert, W. S. Hurst, A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2 and CO,” Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

1980

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for rotational Raman studies,” Opt. Lett. 5, 380–382 (1980).
[CrossRef] [PubMed]

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

1979

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–251 (1979).
[CrossRef]

Aldén, M.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

Baukal, C.

C. Baukal, “Basic principles,” in Oxygen-Enhanced Combustion, C. Baukal, ed. (CRC Press, Boca Raton, Fla., 1998), Chap. 1.
[CrossRef]

Beattie, I. R.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Bengtsson, P.-E.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

Berger, H.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Black, J. D.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Bonamy, J.

B. Lavorel, L. Guillot, J. Bonamy, D. Robert, “Collisional Raman linewidths of nitrogen at high temperature (1700–2400 K),” Opt. Lett. 20, 1189–1191 (1995).
[CrossRef] [PubMed]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

Bonamy, L.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

Chaux, R.

G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

Dreier, T.

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q-branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

T. Dreier, G. Schiff, “High-temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, “Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-Stokes Raman scattering,” Appl. Phys. B 45, 183–190 (1988).
[CrossRef]

Eckbreth, A. C.

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for rotational Raman studies,” Opt. Lett. 5, 380–382 (1980).
[CrossRef] [PubMed]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Fanjoux, G.

G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
[CrossRef]

Farrow, R. L.

Fein, A.

G. J. Rosasco, W. Lempert, W. S. Hurst, A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2 and CO,” Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Gilson, T. R.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Gonze, M. L.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

Gordon, S.

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” NASA rep. 1311 (NASA, Lewis Research Center, Cleveland, Oh., 1994).

Greenhalgh, D. A.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Guillot, L.

Hall, R. J.

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef] [PubMed]

Hartmann, J. M.

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

Hurst, W. S.

G. J. Rosasco, W. Lempert, W. S. Hurst, A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2 and CO,” Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Jenny, S. N.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Jonuscheit, J.

Koszykowski, M. L.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

M. L. Koszykowski, R. L. Farrow, R. E. Palmer, “Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra,” Opt. Lett. 10, 478–480 (1985).
[CrossRef] [PubMed]

Lange, B.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, “Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-Stokes Raman scattering,” Appl. Phys. B 45, 183–190 (1988).
[CrossRef]

Lavorel, B.

B. Lavorel, L. Guillot, J. Bonamy, D. Robert, “Collisional Raman linewidths of nitrogen at high temperature (1700–2400 K),” Opt. Lett. 20, 1189–1191 (1995).
[CrossRef] [PubMed]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

B. Lavorel, G. Millot, M. Lefebvre, M. Péalat, “Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge,” J. Raman Spectrosc. 19, 375–378 (1988).
[CrossRef]

Lefebvre, M.

B. Lavorel, G. Millot, M. Lefebvre, M. Péalat, “Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge,” J. Raman Spectrosc. 19, 375–378 (1988).
[CrossRef]

Leipertz, A.

Lempert, W.

G. J. Rosasco, W. Lempert, W. S. Hurst, A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2 and CO,” Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Lucht, R. P.

R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef] [PubMed]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

Mattern, P. L.

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–251 (1979).
[CrossRef]

McBride, B. J.

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” NASA rep. 1311 (NASA, Lewis Research Center, Cleveland, Oh., 1994).

Millot, G.

G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

B. Lavorel, G. Millot, M. Lefebvre, M. Péalat, “Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge,” J. Raman Spectrosc. 19, 375–378 (1988).
[CrossRef]

Palmer, R. E.

Péalat, M.

B. Lavorel, G. Millot, M. Lefebvre, M. Péalat, “Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge,” J. Raman Spectrosc. 19, 375–378 (1988).
[CrossRef]

Rahn, L. A.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

L. A. Rahn, R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
[CrossRef]

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–251 (1979).
[CrossRef]

Robert, D.

B. Lavorel, L. Guillot, J. Bonamy, D. Robert, “Collisional Raman linewidths of nitrogen at high temperature (1700–2400 K),” Opt. Lett. 20, 1189–1191 (1995).
[CrossRef] [PubMed]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

Rosasco, G. J.

G. J. Rosasco, W. Lempert, W. S. Hurst, A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2 and CO,” Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Rosenmann, L.

G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
[CrossRef]

Rouillé, G.

G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992).
[CrossRef]

Saint-Loup, R.

G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
[CrossRef]

G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

Santos, J.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

Schauer, F. R.

Schenk, M.

Schiff, G.

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q-branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

T. Dreier, G. Schiff, “High-temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

Seeger, T.

Shirley, J. A.

Suvernev, A. A.

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q-branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

Thumann, A.

Trebino, R.

Wolfrum, J.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, “Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-Stokes Raman scattering,” Appl. Phys. B 45, 183–190 (1988).
[CrossRef]

Zahn, M.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, “Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-Stokes Raman scattering,” Appl. Phys. B 45, 183–190 (1988).
[CrossRef]

Zych, L. J.

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–251 (1979).
[CrossRef]

Appl. Opt.

Appl. Phys. B

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, “Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-Stokes Raman scattering,” Appl. Phys. B 45, 183–190 (1988).
[CrossRef]

T. Dreier, G. Schiff, “High-temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

Appl. Spectrosc.

Chem. Phys.

M. L. Gonze, R. Saint-Loup, J. Santos, B. Lavorel, R. Chaux, G. Millot, H. Berger, L. Bonamy, J. Bonamy, D. Robert, “Collisional line broadening and line shifting in N2–CO2 mixture studied by inverse Raman spectroscopy,” Chem. Phys. 148, 417–428 (1990).
[CrossRef]

Chem. Phys. Lett.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

G. J. Rosasco, W. Lempert, W. S. Hurst, A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2 and CO,” Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Combust. Flame

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

J. Chem. Phys.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

G. Fanjoux, G. Millot, R. Saint-Loup, R. Chaux, L. Rosenmann, “Coherent anti-Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch,” J. Chem. Phys. 101, 1061–1071 (1994).
[CrossRef]

J. Bonamy, D. Robert, J. M. Hartmann, M. L. Gonze, R. Saint-Loup, H. Berger, “Line broadening, line shifting, and line coupling effects on N2–H2O stimulated Raman spectra,” J. Chem. Phys. 91, 5916–5925 (1989).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes Raman spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

T. Dreier, G. Schiff, A. A. Suvernev, “Collisional effects in Q-branch coherent anti-Stokes Raman spectra of N2 and O2 at high pressure and high temperature,” J. Chem. Phys. 100, 6275–6289 (1994).
[CrossRef]

J. Mol. Spectrosc.

G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Raman Spectrosc.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of dinitrogen 14N2, 14N 15N, and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

B. Lavorel, G. Millot, M. Lefebvre, M. Péalat, “Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge,” J. Raman Spectrosc. 19, 375–378 (1988).
[CrossRef]

Opt. Commun.

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–251 (1979).
[CrossRef]

Opt. Lett.

Other

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

C. Baukal, “Basic principles,” in Oxygen-Enhanced Combustion, C. Baukal, ed. (CRC Press, Boca Raton, Fla., 1998), Chap. 1.
[CrossRef]

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” NASA rep. 1311 (NASA, Lewis Research Center, Cleveland, Oh., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Thermocouple measurements taken along the axis of the tube furnace.

Fig. 2
Fig. 2

CARS spectrum of N2 at 1838 K. Data from both the fundamental and the first hot band were acquired and fitted. Each filled circle represents the average of 20 laser shots of data that were normalized by the laser pulse energies, and the curve represents the best spectral fit. The deviation between the fit and the data is displayed in the curve located below the spectrum.

Fig. 3
Fig. 3

CARS spectrum of O2 at 1863 K. Data from both the fundamental and the first three hot bands were acquired and fitted. Each filled circle represents the average of 20 laser shots of data that were normalized by the laser pulse energies, and the curve represents the best spectral fit. The deviation between the fit and the data is displayed in the curve located below the spectrum.

Fig. 4
Fig. 4

Comparison between N2 CARS temperature measurements, O2 CARS temperature measurements, and thermocouple measurements in room-temperature air and in the furnace. Each symbol represents an average of three to seven temperatures acquired from different CARS spectra. The scatter in the temperature measurements is smaller than the size of the symbols in the upper plot.

Fig. 5
Fig. 5

CARS spectrum of O2 at 2476 K. Data from both the fundamental and the first two hot bands were acquired and fitted. Each filled circle represents the average of 20 laser shots of data that were normalized by the laser pulse energies, and the curve represents the best spectral fit. The deviation between the fit and the data is displayed in the curve located below the spectrum.

Metrics