Abstract

Partially premixed flames (PPF’s) represent a class of hybrid flames that contain multiple reaction zones. A detailed understanding of the temperature distribution in PPF’s is important from both practical and scientific considerations. Path-integrated or line-of-sight measurement techniques, such as holographic interferometry (HI), that are based on the change in the optical phase of a light beam can be used to reconstruct the refractive index n in flames and thereafter to infer the temperature distribution. Therefore to describe the flame structure in the context of these measurements requires that a systematic approach be developed that relates the density, the temperature, and the composition to the refractive index. We demonstrate that a conserved scalar ξ that transforms the flame structure from a spatial to a generic distribution can be inferred from the refractive-index distribution. Thereafter measurements of the density, the temperature, and the composition in two-dimensional PPF’s become feasible. We report the first application, to our knowledge, of this method to HI. Specifically, we used HI to measure the refractive-index distributions in methane–air PPF’s. One PPF is a double flame that has two reaction zones, and the other is a triple flame that contains three reaction zones. We have applied the procedure to infer the distribution of the modified mixture fraction and thereafter the local temperature and the local mass fractions. We find the local temperature differences, ΔT(x, y) = |T[ n(x, y)] - T′[ξ(x, y)]|, to be relatively small. We conclude that it is possible to use HI to infer the mixture-fraction distribution and thereafter the flame structures by the application of state relations in the case of PPF’s.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
    [CrossRef]
  2. R. Azzoni, S. Ratti, S. K. Aggarwal, I. K. Puri, “The structure of triple flames stabilized on a slot burner,” Combust. Flame 119, 23–40 (1999).
    [CrossRef]
  3. Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
    [CrossRef]
  4. H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 1, 131–136 (1985).
    [CrossRef]
  5. G. W. Faris, R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988).
    [CrossRef] [PubMed]
  6. A. K. Agrawal, N. K. Butuk, S. R. Gollahalli, D. Griffin, “Three-dimensional rainbow schlieren tomography of a temperature field in gas flows,” Appl. Opt. 37, 479–485 (1998).
    [CrossRef]
  7. G. P. Montgomery, D. L. Reuss, “Effects of refraction on axisymmetric flame temperatures measured by holographic interferometry,” Appl. Opt. 21, 1373–1380 (1982).
    [CrossRef] [PubMed]
  8. P. V. Farrell, G. S. Springer, C. M. Vest, “Heterodyne holographic interferometry: concentration and temperature measurements in gas mixtures,” Appl. Opt. 21, 1624–1627 (1982).
    [CrossRef] [PubMed]
  9. C. Shakher, A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).
    [CrossRef] [PubMed]
  10. X. Xiao, C. W. Choi, I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser holographic interferometry,” Combust. Flame 120, 318–332 (2000).
    [CrossRef]
  11. W. Merzkirch, Flow Visualization, 2nd ed. (Academic, Orlando, Fla., 1987).
  12. K. Seshadri, I. K. Puri, N. Peters, “Experimental and theoretical investigations of partially premixed diffusion flames at extinction,” Combust. Flame 61, 237–249 (1985).
    [CrossRef]
  13. S. K. Aggarwal, I. K. Puri, “Flame structure interactions and state relationships in an unsteady partially premixed flame,” AIAA J. 36, 1190–1199 (1998).
    [CrossRef]
  14. B. J. Krass, B. W. Zellmer, I. K. Puri, S. Singh, “Application of flamelet profiles to flame structure in practical burners,” ASME J. Energy Res. Technol. 121, 66–72 (1999).
    [CrossRef]
  15. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  16. A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, “A fortran program for computing opposed flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1997).
  17. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, “GRI-MECH 2.11,” URL: http://www.me.berkeley.edu.gri-mech/ , (1999).
  18. W. C. Gardiner, Y. Hidaka, T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213–219 (1981).
    [CrossRef]
  19. C. W. Choi, I. K. Puri, “Flame stretch effects on partially premixed flames,” Combust. Flame 123, 119–139 (2000).
    [CrossRef]
  20. A. K. Agrawal, B. W. Albers, “Schlieren analysis of an oscillating gas-jet diffusion flame,” Combust. Flame 119, 84–94 (1999).
    [CrossRef]
  21. Y. R. Sivathanu, G. M. Faeth, “Generalized state relationships for scalar properties in nonpremixed hydrocarbon–air flames,” Combust. Flame 82, 211–230 (1990).
    [CrossRef]
  22. P. A. Libby, F. A. Williams, eds., Turbulent Reacting Flows (Academic, New York, 1994).
  23. R. Azzoni, S. Ratti, I. K. Puri, S. K. Aggarwal, “Gravity effects on a steady two-dimensional methane–air triple flame,” Phys. Fluids 11, 3449–3464 (1999).
    [CrossRef]
  24. A. K. Shenoy, A. K. Agrawal, S. R. Gollahalli, “Quantitative evaluation of flow computations by rainbow schlieren deflectometry,” AIAA J. 36, 1953–1960 (1998).
    [CrossRef]
  25. I. K. Puri, S. K. Aggarwal, S. Ratti, R. Azzoni, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combust. Flame 124, 311–325 (2001).
    [CrossRef]

2001 (1)

I. K. Puri, S. K. Aggarwal, S. Ratti, R. Azzoni, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combust. Flame 124, 311–325 (2001).
[CrossRef]

2000 (2)

C. W. Choi, I. K. Puri, “Flame stretch effects on partially premixed flames,” Combust. Flame 123, 119–139 (2000).
[CrossRef]

X. Xiao, C. W. Choi, I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser holographic interferometry,” Combust. Flame 120, 318–332 (2000).
[CrossRef]

1999 (5)

R. Azzoni, S. Ratti, S. K. Aggarwal, I. K. Puri, “The structure of triple flames stabilized on a slot burner,” Combust. Flame 119, 23–40 (1999).
[CrossRef]

Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
[CrossRef]

A. K. Agrawal, B. W. Albers, “Schlieren analysis of an oscillating gas-jet diffusion flame,” Combust. Flame 119, 84–94 (1999).
[CrossRef]

B. J. Krass, B. W. Zellmer, I. K. Puri, S. Singh, “Application of flamelet profiles to flame structure in practical burners,” ASME J. Energy Res. Technol. 121, 66–72 (1999).
[CrossRef]

R. Azzoni, S. Ratti, I. K. Puri, S. K. Aggarwal, “Gravity effects on a steady two-dimensional methane–air triple flame,” Phys. Fluids 11, 3449–3464 (1999).
[CrossRef]

1998 (3)

A. K. Shenoy, A. K. Agrawal, S. R. Gollahalli, “Quantitative evaluation of flow computations by rainbow schlieren deflectometry,” AIAA J. 36, 1953–1960 (1998).
[CrossRef]

S. K. Aggarwal, I. K. Puri, “Flame structure interactions and state relationships in an unsteady partially premixed flame,” AIAA J. 36, 1190–1199 (1998).
[CrossRef]

A. K. Agrawal, N. K. Butuk, S. R. Gollahalli, D. Griffin, “Three-dimensional rainbow schlieren tomography of a temperature field in gas flows,” Appl. Opt. 37, 479–485 (1998).
[CrossRef]

1994 (1)

1990 (1)

Y. R. Sivathanu, G. M. Faeth, “Generalized state relationships for scalar properties in nonpremixed hydrocarbon–air flames,” Combust. Flame 82, 211–230 (1990).
[CrossRef]

1988 (1)

1985 (2)

K. Seshadri, I. K. Puri, N. Peters, “Experimental and theoretical investigations of partially premixed diffusion flames at extinction,” Combust. Flame 61, 237–249 (1985).
[CrossRef]

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 1, 131–136 (1985).
[CrossRef]

1982 (2)

1981 (1)

W. C. Gardiner, Y. Hidaka, T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213–219 (1981).
[CrossRef]

Aggarwal, S. K.

I. K. Puri, S. K. Aggarwal, S. Ratti, R. Azzoni, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combust. Flame 124, 311–325 (2001).
[CrossRef]

R. Azzoni, S. Ratti, I. K. Puri, S. K. Aggarwal, “Gravity effects on a steady two-dimensional methane–air triple flame,” Phys. Fluids 11, 3449–3464 (1999).
[CrossRef]

R. Azzoni, S. Ratti, S. K. Aggarwal, I. K. Puri, “The structure of triple flames stabilized on a slot burner,” Combust. Flame 119, 23–40 (1999).
[CrossRef]

Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
[CrossRef]

S. K. Aggarwal, I. K. Puri, “Flame structure interactions and state relationships in an unsteady partially premixed flame,” AIAA J. 36, 1190–1199 (1998).
[CrossRef]

Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
[CrossRef]

Agrawal, A. K.

A. K. Agrawal, B. W. Albers, “Schlieren analysis of an oscillating gas-jet diffusion flame,” Combust. Flame 119, 84–94 (1999).
[CrossRef]

A. K. Shenoy, A. K. Agrawal, S. R. Gollahalli, “Quantitative evaluation of flow computations by rainbow schlieren deflectometry,” AIAA J. 36, 1953–1960 (1998).
[CrossRef]

A. K. Agrawal, N. K. Butuk, S. R. Gollahalli, D. Griffin, “Three-dimensional rainbow schlieren tomography of a temperature field in gas flows,” Appl. Opt. 37, 479–485 (1998).
[CrossRef]

Albers, B. W.

A. K. Agrawal, B. W. Albers, “Schlieren analysis of an oscillating gas-jet diffusion flame,” Combust. Flame 119, 84–94 (1999).
[CrossRef]

Azzoni, R.

I. K. Puri, S. K. Aggarwal, S. Ratti, R. Azzoni, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combust. Flame 124, 311–325 (2001).
[CrossRef]

R. Azzoni, S. Ratti, I. K. Puri, S. K. Aggarwal, “Gravity effects on a steady two-dimensional methane–air triple flame,” Phys. Fluids 11, 3449–3464 (1999).
[CrossRef]

R. Azzoni, S. Ratti, S. K. Aggarwal, I. K. Puri, “The structure of triple flames stabilized on a slot burner,” Combust. Flame 119, 23–40 (1999).
[CrossRef]

Butuk, N. K.

Byer, R. L.

Choi, C. W.

X. Xiao, C. W. Choi, I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser holographic interferometry,” Combust. Flame 120, 318–332 (2000).
[CrossRef]

C. W. Choi, I. K. Puri, “Flame stretch effects on partially premixed flames,” Combust. Flame 123, 119–139 (2000).
[CrossRef]

Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
[CrossRef]

Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
[CrossRef]

Faeth, G. M.

Y. R. Sivathanu, G. M. Faeth, “Generalized state relationships for scalar properties in nonpremixed hydrocarbon–air flames,” Combust. Flame 82, 211–230 (1990).
[CrossRef]

Faris, G. W.

Farrell, P. V.

Gardiner, W. C.

W. C. Gardiner, Y. Hidaka, T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213–219 (1981).
[CrossRef]

Gollahalli, S. R.

A. K. Shenoy, A. K. Agrawal, S. R. Gollahalli, “Quantitative evaluation of flow computations by rainbow schlieren deflectometry,” AIAA J. 36, 1953–1960 (1998).
[CrossRef]

A. K. Agrawal, N. K. Butuk, S. R. Gollahalli, D. Griffin, “Three-dimensional rainbow schlieren tomography of a temperature field in gas flows,” Appl. Opt. 37, 479–485 (1998).
[CrossRef]

Grcar, J. F.

A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, “A fortran program for computing opposed flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1997).

Griffin, D.

Hertz, H. M.

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 1, 131–136 (1985).
[CrossRef]

Hidaka, Y.

W. C. Gardiner, Y. Hidaka, T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213–219 (1981).
[CrossRef]

Katta, V. R.

Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
[CrossRef]

Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
[CrossRef]

Kee, R. J.

A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, “A fortran program for computing opposed flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1997).

Krass, B. J.

B. J. Krass, B. W. Zellmer, I. K. Puri, S. Singh, “Application of flamelet profiles to flame structure in practical burners,” ASME J. Energy Res. Technol. 121, 66–72 (1999).
[CrossRef]

Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
[CrossRef]

Lutz, A. E.

A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, “A fortran program for computing opposed flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1997).

Merzkirch, W.

W. Merzkirch, Flow Visualization, 2nd ed. (Academic, Orlando, Fla., 1987).

Montgomery, G. P.

Nirala, A. K.

Peters, N.

K. Seshadri, I. K. Puri, N. Peters, “Experimental and theoretical investigations of partially premixed diffusion flames at extinction,” Combust. Flame 61, 237–249 (1985).
[CrossRef]

Puri, I. K.

I. K. Puri, S. K. Aggarwal, S. Ratti, R. Azzoni, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combust. Flame 124, 311–325 (2001).
[CrossRef]

C. W. Choi, I. K. Puri, “Flame stretch effects on partially premixed flames,” Combust. Flame 123, 119–139 (2000).
[CrossRef]

X. Xiao, C. W. Choi, I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser holographic interferometry,” Combust. Flame 120, 318–332 (2000).
[CrossRef]

Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
[CrossRef]

R. Azzoni, S. Ratti, S. K. Aggarwal, I. K. Puri, “The structure of triple flames stabilized on a slot burner,” Combust. Flame 119, 23–40 (1999).
[CrossRef]

B. J. Krass, B. W. Zellmer, I. K. Puri, S. Singh, “Application of flamelet profiles to flame structure in practical burners,” ASME J. Energy Res. Technol. 121, 66–72 (1999).
[CrossRef]

R. Azzoni, S. Ratti, I. K. Puri, S. K. Aggarwal, “Gravity effects on a steady two-dimensional methane–air triple flame,” Phys. Fluids 11, 3449–3464 (1999).
[CrossRef]

S. K. Aggarwal, I. K. Puri, “Flame structure interactions and state relationships in an unsteady partially premixed flame,” AIAA J. 36, 1190–1199 (1998).
[CrossRef]

K. Seshadri, I. K. Puri, N. Peters, “Experimental and theoretical investigations of partially premixed diffusion flames at extinction,” Combust. Flame 61, 237–249 (1985).
[CrossRef]

Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
[CrossRef]

Ratti, S.

I. K. Puri, S. K. Aggarwal, S. Ratti, R. Azzoni, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combust. Flame 124, 311–325 (2001).
[CrossRef]

R. Azzoni, S. Ratti, I. K. Puri, S. K. Aggarwal, “Gravity effects on a steady two-dimensional methane–air triple flame,” Phys. Fluids 11, 3449–3464 (1999).
[CrossRef]

R. Azzoni, S. Ratti, S. K. Aggarwal, I. K. Puri, “The structure of triple flames stabilized on a slot burner,” Combust. Flame 119, 23–40 (1999).
[CrossRef]

Reuss, D. L.

Rupley, F. M.

A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, “A fortran program for computing opposed flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1997).

Seshadri, K.

K. Seshadri, I. K. Puri, N. Peters, “Experimental and theoretical investigations of partially premixed diffusion flames at extinction,” Combust. Flame 61, 237–249 (1985).
[CrossRef]

Shakher, C.

Shenoy, A. K.

A. K. Shenoy, A. K. Agrawal, S. R. Gollahalli, “Quantitative evaluation of flow computations by rainbow schlieren deflectometry,” AIAA J. 36, 1953–1960 (1998).
[CrossRef]

Shu, Z.

Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
[CrossRef]

Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
[CrossRef]

Singh, S.

B. J. Krass, B. W. Zellmer, I. K. Puri, S. Singh, “Application of flamelet profiles to flame structure in practical burners,” ASME J. Energy Res. Technol. 121, 66–72 (1999).
[CrossRef]

Sivathanu, Y. R.

Y. R. Sivathanu, G. M. Faeth, “Generalized state relationships for scalar properties in nonpremixed hydrocarbon–air flames,” Combust. Flame 82, 211–230 (1990).
[CrossRef]

Springer, G. S.

Tanzawa, T.

W. C. Gardiner, Y. Hidaka, T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213–219 (1981).
[CrossRef]

Vest, C. M.

Xiao, X.

X. Xiao, C. W. Choi, I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser holographic interferometry,” Combust. Flame 120, 318–332 (2000).
[CrossRef]

Zellmer, B. W.

B. J. Krass, B. W. Zellmer, I. K. Puri, S. Singh, “Application of flamelet profiles to flame structure in practical burners,” ASME J. Energy Res. Technol. 121, 66–72 (1999).
[CrossRef]

AIAA J. (2)

S. K. Aggarwal, I. K. Puri, “Flame structure interactions and state relationships in an unsteady partially premixed flame,” AIAA J. 36, 1190–1199 (1998).
[CrossRef]

A. K. Shenoy, A. K. Agrawal, S. R. Gollahalli, “Quantitative evaluation of flow computations by rainbow schlieren deflectometry,” AIAA J. 36, 1953–1960 (1998).
[CrossRef]

Appl. Opt. (5)

ASME J. Energy Res. Technol. (1)

B. J. Krass, B. W. Zellmer, I. K. Puri, S. Singh, “Application of flamelet profiles to flame structure in practical burners,” ASME J. Energy Res. Technol. 121, 66–72 (1999).
[CrossRef]

Combust. Flame (9)

W. C. Gardiner, Y. Hidaka, T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213–219 (1981).
[CrossRef]

C. W. Choi, I. K. Puri, “Flame stretch effects on partially premixed flames,” Combust. Flame 123, 119–139 (2000).
[CrossRef]

A. K. Agrawal, B. W. Albers, “Schlieren analysis of an oscillating gas-jet diffusion flame,” Combust. Flame 119, 84–94 (1999).
[CrossRef]

Y. R. Sivathanu, G. M. Faeth, “Generalized state relationships for scalar properties in nonpremixed hydrocarbon–air flames,” Combust. Flame 82, 211–230 (1990).
[CrossRef]

X. Xiao, C. W. Choi, I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser holographic interferometry,” Combust. Flame 120, 318–332 (2000).
[CrossRef]

R. Azzoni, S. Ratti, S. K. Aggarwal, I. K. Puri, “The structure of triple flames stabilized on a slot burner,” Combust. Flame 119, 23–40 (1999).
[CrossRef]

Z. Shu, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Gravity effects on steady two-dimensional partially premixed methane–air flames,” Combust. Flame 118, 91–107 (1999).
[CrossRef]

K. Seshadri, I. K. Puri, N. Peters, “Experimental and theoretical investigations of partially premixed diffusion flames at extinction,” Combust. Flame 61, 237–249 (1985).
[CrossRef]

I. K. Puri, S. K. Aggarwal, S. Ratti, R. Azzoni, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combust. Flame 124, 311–325 (2001).
[CrossRef]

Opt. Commun. (1)

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 1, 131–136 (1985).
[CrossRef]

Phys. Fluids (1)

R. Azzoni, S. Ratti, I. K. Puri, S. K. Aggarwal, “Gravity effects on a steady two-dimensional methane–air triple flame,” Phys. Fluids 11, 3449–3464 (1999).
[CrossRef]

Other (6)

Z. Shu, B. J. Krass, C. W. Choi, S. K. Aggarwal, V. R. Katta, I. K. Puri, “Investigation of the flame structure of a steady two-dimensional partially premixed methane–air slot flame,” in Proceedings of the Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 625–632.
[CrossRef]

W. Merzkirch, Flow Visualization, 2nd ed. (Academic, Orlando, Fla., 1987).

P. A. Libby, F. A. Williams, eds., Turbulent Reacting Flows (Academic, New York, 1994).

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley, “A fortran program for computing opposed flow diffusion flames,” Rep. SAND96–8243 (Sandia National Laboratories, Livermore, Calif., 1997).

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, “GRI-MECH 2.11,” URL: http://www.me.berkeley.edu.gri-mech/ , (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Image-plane holography setup: A relay lens is added to the path of the object beam to obtain a 1:1 image.

Fig. 2
Fig. 2

Major species mass fractions in a CH4–air counterflow PPF plotted as a function of the modified mixture fraction ξ.

Fig. 3
Fig. 3

Refractive-index and temperature distributions plotted as functions of ξ for three levels of PPF’s and a nonpremixed flame at three strain rates of a = 20, 50, 150 s-1. The rich-side and the lean-side equivalence ratios, respectively, are (a) ϕ r = 1.5 and ϕ l = 0, (b) ϕ r = 1.7 and ϕ l = 0, (c) ϕ r = 2.0 and ϕ l = 0 (because of flashback, the ϕ r flames have data at a = 20, 150 s-1). In contrast, the corresponding relations at a = 20, 50 s-1 for a nonpremixed flame, i.e., data at ϕ r → ∞ and ϕ l = 0, are also presented.

Fig. 4
Fig. 4

Refractive-index distribution for (a) the double flame established at ϕ r = 1.5 and ϕ l = 0 and (b) the triple flame established at ϕ r = 1.8 and ϕ l = 0.35. In both cases the inner- and the outer-slot bulk-averaged velocities are 30 cm-1. The numbers 1 through 10 shown in the plots represent the contour levels for n.

Fig. 5
Fig. 5

Modified mixture fraction for (a) the double and (b) the triple flames that correspond to the images shown in Figs. 4(a) and 4(b), respectively. The numbers 1 through 10 shown in the plots represent the contour levels for ξ.

Fig. 6
Fig. 6

Temperature distribution based on the state relations for (a) the double and (b) the triple flames that correspond to the images in Figs. 4(a) and 4(b), respectively. The numbers 1 through 13 shown in the plots represent the contour levels for the temperature.

Fig. 7
Fig. 7

Mass-fraction distributions inferred from the state relations for the double flame that corresponds to the image in Fig. 4(a): (a) molecular oxygen, (b) nitrogen, (c) molecular hydrogen, (d) carbon monoxide, (e) water, (f) carbon dioxide. The numbers 1 through 10 shown in the figures represent the contour levels that correspond to the mass fractions.

Fig. 8
Fig. 8

Temperature differences ΔT(x, y) for (a) the double and (b) the triple flames that correspond to the images shown in Figs. 4(a) and 4(b), respectively. The numbers 1 through 10 shown in the plots represent the contour levels that correspond to the local temperature difference.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

nx, y, z-1=ρx, y, z Kmix=ρx, y, z×Σyix, y, zki,
nξ=1+ρξΣyiξki.
n1-nx, y, zds=Nλ,
nx, y=n1-Nλ/L-n1L n/n12L/3-zf/2,
nx, y=n1-Nλ/L.
Tx, y, z=T0n0-1/nx, y, z-1.

Metrics