Abstract

A novel flying-optical-head data storage technology is described. It is based on a micro-optical recording head that contains a silicon micromachined torsional mirror for high-bandwidth track following. Multiple heads and disks are contained in a Winchester-style rotating disk drive. Single-mode optical fibers provide light delivery to and from the heads. Both polarization-maintaining and low-birefringence fiber systems have been implemented for magneto-optical (MO) recording. A fixed optics module containing a laser diode, MO detection optics, and a 1 × N fiber bundle switch has been developed as an integral part of this new recording architecture. A 5.25-in. (13.33-cm), half-height prototype drive design and its performance are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara, H. Nishihara, “Integrated-optic disc pickup devices using waveguide holographic components,” in Holographic Optics II: Principles and Applications, G. Morris, ed., Proc. SPIE1136, 92–99 (1989).
  2. H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall flying optical head for phase change recording media,” Appl. Opt. 28, 4360–4365 (1989).
    [CrossRef] [PubMed]
  3. S. Renard, S. Valette, “Magneto optical reading and writing integrated heads: a way to a multigigabyte multi-rigid-disk drive,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 238–247 (1991).
  4. J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.
  5. J. P. Wilde, J. E. Hurst, J. F. Heanue, “System and method using optical fibers in a data storage and retrieval system,” U.S. patent5,850,375 (15December1998).
  6. J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent5,940,549 (17August1999).
  7. J. Davis, “Beyond the superparamagnetic limit. II: Far-field recording,” in Data Storage (PennWell, Amsterdam, The Netherlands, 1998), pp. 33–36.
  8. M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge U. Press, Cambridge, UK, 1995).
    [CrossRef]
  9. T. W. McDaniel, R. H. Victora, eds., Handbook of Magneto-Optical Data Recording (Noyes, Westwood, N.J., 1997).
  10. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
    [CrossRef]
  11. I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
    [CrossRef] [PubMed]
  12. H. Yoshikawa, T. Ohkubo, K. Fukuzawa, L. Bouet, M. Yamamoto, “Readout characteristics of a near-field optical probe as a data-storage readout device: submicrometer scan height and resolution,” Appl. Opt. 38, 863–867 (1999).
    [CrossRef]
  13. Y. Tanaka, M. Kurebayashi, Y. Murakami, S. Yonezawa, “Short-marks recording characteristics of laser-pumped magnetic-field-modulation recording in a narrow track pitch and on magnetically induced superresolution disks,” Appl. Opt. 37, 2699–2707 (1998).
    [CrossRef]
  14. H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
    [CrossRef]
  15. H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
    [CrossRef]
  16. K. A. Belser, T. McDaniel, J. E. Davis, J. E. Hurst, “Magneto-resistive magneto-optical head,” U.S. patent5,889,641 (30March1999).
  17. F. S. Barnes, K. S. Lee, A. W. Smith, “Use of optical fiber heads for optical disks,” Appl. Opt. 25, 4010–4012 (1986).
    [CrossRef] [PubMed]
  18. M. N. Opsasnick, D. D. Stancil, S. T. White, M. Tsai, “Optical fibers for magneto-optical recording,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 276–280 (1991).
  19. Quinta/Seagate demonstrated various versions of the OAW drive technology at COMDEX 1998, Las Vegas, Nev., November1998.
  20. G. T. Sincerbox, “Miniature optics for optical recording,” in Gradient-Index Optics and Miniature Optics, Vol. 935 of SPIE Critical Review Series, D. C. Lerner, J. D. Rees, eds. (SPIE, Bellingham, Wash., 1988), pp. 63–76.
  21. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
    [CrossRef]
  22. See, for example, the 3M Specialty Single-Mode Fiber: 3M™ Single-Polarization Fibers, Product Data Application Note (3M Specialty Optical Fibers, West Haven, Conn., 1995).
  23. A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, Reading, Mass., 1990), p. 83.
  24. R. E. Schuh, X. Shan, A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” J. Lightwave Technol. 16, 1583–1588 (1998).
    [CrossRef]
  25. Z. B. Ren, Ph. Robert, P.-A. Paratte, “Temperature dependence of bend- and twist-induced birefringence in low-birefringence fiber,” Opt. Lett. 13, 62–64 (1988).
    [CrossRef] [PubMed]
  26. See, for example, C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Chap. 2, pp. 176–181.
  27. E. C. Gage, “Apparatus and method for optimizing performance in an optical storage system read/write head,” U.S. patent5,347,297 (13September1994).
  28. See, for example, the product guide for Meadowlark Optics, Frederick, Colo. ( www.meadowlark.com ).
  29. D. A. Horsley, A. Singh, A. P. Pisano, R. Horowitz, “Angular micropositioner for disk drives,” in Proceedings of the Tenth Annual International Workshop on MEMS (Asian Technology Information Program, Tokyo, 1997), pp. 454–459.
  30. W. C. Tang, T. H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators 20, 25–32 (1989).
    [CrossRef]
  31. J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).
  32. L. Y. Lin, J. L. Shen, S. S. Lee, M. C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Opt. Lett. 21, 155–157 (1996).
    [CrossRef] [PubMed]
  33. T. McDaniel, Y. Wang, “Coil for use with magneto-optical head,” U.S. patent5,903,525 (11May1999).
  34. J. Drake, H. Jerman, “A micromachined torsional mirror for track following in magneto-optical disk drives,” in 2000 Solid-State Sensor and Actuator Workshop, Technical Digest (Transducers Research Foundation, Inc., Cleveland, Ohio, 2000), p. 10.
  35. The microlenses were fabricated by Geltech Inc., Orlando, Fla. ( www.geltech.com ).
  36. See, for example, the various microlens arrays made by MEMS Optical, LLC (Huntsville, Ala.) on their website www.memsoptical.com .
  37. J. F. Heanue, M. A. Wardas, “High numerical aperture objective lens manufacturable in wafer form,” U.S. patent6,049,430 (11April2000).
  38. The CircuLaser diode is manufactured by Blue Sky Research, San Jose, Calif. ( www.blueskyresearch.com ).
  39. Tokin America Inc., San Jose, Calif. ( www.tokin.com ).
  40. G. R. Gray, A. T. Ryan, G. P. Agrawal, E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
    [CrossRef]
  41. See, for example, PSD devices made by Hamamatsu Photonics ( www.hamamatsu.com ). The PSD used here is a custom part made for Quinta/Seagate by Hamamatsu Corp., San Jose, Calif.
  42. J. F. Heanue, J. P. Wilde, J. E. Hurst, J. H. Jerman, “Data storage system having an optical processing flying head,” U.S. patent6,034,938 (7March2000).
  43. M. Mansuripur, “Analysis of astigmatic focusing and push–pull tracking error signals in magnetooptical disk systems,” Appl. Opt. 26, 3981–3986 (1987).
    [CrossRef] [PubMed]
  44. M. Mansuripur, “Certain computational aspects for vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989).
    [CrossRef]
  45. The vector diffraction modeling is carried out with DIFFRACT (a product of MM Research, Tucson, Ariz.) in combination with Delta (supplied by L. Li, University of Arizona, Tucson, Ariz.).
  46. T. D. Goodman, M. Mansuripur, “Optimization of groove depth for cross-talk cancellation in the scheme of land-groove recording in magneto-optic disk systems,” Appl. Opt. 35, 1107–1119 (1996).
    [CrossRef] [PubMed]
  47. A. Fukumoto, S. Kai, S. Masuhara, K. Aratani, “Magneto-optical detection using an optical phase shifter in higher track density land/groove recording,” Jpn. J. Appl. Phys. 37, 2144–2149 (1998).
    [CrossRef]
  48. W. D. Huber, D. A. Schmid, “High data rate magneto-optical recording,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 252–257 (2000).
    [CrossRef]

2000

H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
[CrossRef]

1999

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

H. Yoshikawa, T. Ohkubo, K. Fukuzawa, L. Bouet, M. Yamamoto, “Readout characteristics of a near-field optical probe as a data-storage readout device: submicrometer scan height and resolution,” Appl. Opt. 38, 863–867 (1999).
[CrossRef]

1998

1997

1996

1994

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

1993

G. R. Gray, A. T. Ryan, G. P. Agrawal, E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
[CrossRef]

1989

1988

1987

1986

F. S. Barnes, K. S. Lee, A. W. Smith, “Use of optical fiber heads for optical disks,” Appl. Opt. 25, 4010–4012 (1986).
[CrossRef] [PubMed]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Agrawal, G. P.

G. R. Gray, A. T. Ryan, G. P. Agrawal, E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
[CrossRef]

Aratani, K.

A. Fukumoto, S. Kai, S. Masuhara, K. Aratani, “Magneto-optical detection using an optical phase shifter in higher track density land/groove recording,” Jpn. J. Appl. Phys. 37, 2144–2149 (1998).
[CrossRef]

Barnes, F. S.

Belser, K. A.

K. A. Belser, T. McDaniel, J. E. Davis, J. E. Hurst, “Magneto-resistive magneto-optical head,” U.S. patent5,889,641 (30March1999).

Bouet, L.

Cohen-Tannoudji, C.

See, for example, C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Chap. 2, pp. 176–181.

Davis, J.

J. Davis, “Beyond the superparamagnetic limit. II: Far-field recording,” in Data Storage (PennWell, Amsterdam, The Netherlands, 1998), pp. 33–36.

Davis, J. E.

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

K. A. Belser, T. McDaniel, J. E. Davis, J. E. Hurst, “Magneto-resistive magneto-optical head,” U.S. patent5,889,641 (30March1999).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent5,940,549 (17August1999).

Diu, B.

See, for example, C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Chap. 2, pp. 176–181.

Drake, J.

J. Drake, H. Jerman, “A micromachined torsional mirror for track following in magneto-optical disk drives,” in 2000 Solid-State Sensor and Actuator Workshop, Technical Digest (Transducers Research Foundation, Inc., Cleveland, Ohio, 2000), p. 10.

Drazan, J.

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent5,940,549 (17August1999).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

Fujimori, S.

Fukumoto, A.

A. Fukumoto, S. Kai, S. Masuhara, K. Aratani, “Magneto-optical detection using an optical phase shifter in higher track density land/groove recording,” Jpn. J. Appl. Phys. 37, 2144–2149 (1998).
[CrossRef]

Fukuzawa, K.

Gage, E. C.

G. R. Gray, A. T. Ryan, G. P. Agrawal, E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
[CrossRef]

E. C. Gage, “Apparatus and method for optimizing performance in an optical storage system read/write head,” U.S. patent5,347,297 (13September1994).

Gangopadhyay, S.

J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.

Goodman, T. D.

Gray, G. R.

G. R. Gray, A. T. Ryan, G. P. Agrawal, E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
[CrossRef]

J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.

Hamamoto, M.

H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
[CrossRef]

Hayashi, S.

Heanue, J. F.

J. P. Wilde, J. E. Hurst, J. F. Heanue, “System and method using optical fibers in a data storage and retrieval system,” U.S. patent5,850,375 (15December1998).

J. F. Heanue, M. A. Wardas, “High numerical aperture objective lens manufacturable in wafer form,” U.S. patent6,049,430 (11April2000).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent5,940,549 (17August1999).

J. F. Heanue, J. P. Wilde, J. E. Hurst, J. H. Jerman, “Data storage system having an optical processing flying head,” U.S. patent6,034,938 (7March2000).

Horowitz, R.

D. A. Horsley, A. Singh, A. P. Pisano, R. Horowitz, “Angular micropositioner for disk drives,” in Proceedings of the Tenth Annual International Workshop on MEMS (Asian Technology Information Program, Tokyo, 1997), pp. 454–459.

Horsley, D. A.

D. A. Horsley, A. Singh, A. P. Pisano, R. Horowitz, “Angular micropositioner for disk drives,” in Proceedings of the Tenth Annual International Workshop on MEMS (Asian Technology Information Program, Tokyo, 1997), pp. 454–459.

Howe, R. T.

W. C. Tang, T. H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators 20, 25–32 (1989).
[CrossRef]

Huber, W. D.

W. D. Huber, D. A. Schmid, “High data rate magneto-optical recording,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 252–257 (2000).
[CrossRef]

Hurst, J. E.

K. A. Belser, T. McDaniel, J. E. Davis, J. E. Hurst, “Magneto-resistive magneto-optical head,” U.S. patent5,889,641 (30March1999).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

J. F. Heanue, J. P. Wilde, J. E. Hurst, J. H. Jerman, “Data storage system having an optical processing flying head,” U.S. patent6,034,938 (7March2000).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent5,940,549 (17August1999).

J. P. Wilde, J. E. Hurst, J. F. Heanue, “System and method using optical fibers in a data storage and retrieval system,” U.S. patent5,850,375 (15December1998).

Ichimura, I.

Jerman, H.

J. Drake, H. Jerman, “A micromachined torsional mirror for track following in magneto-optical disk drives,” in 2000 Solid-State Sensor and Actuator Workshop, Technical Digest (Transducers Research Foundation, Inc., Cleveland, Ohio, 2000), p. 10.

Jerman, J. H.

J. F. Heanue, J. P. Wilde, J. E. Hurst, J. H. Jerman, “Data storage system having an optical processing flying head,” U.S. patent6,034,938 (7March2000).

Kai, S.

A. Fukumoto, S. Kai, S. Masuhara, K. Aratani, “Magneto-optical detection using an optical phase shifter in higher track density land/groove recording,” Jpn. J. Appl. Phys. 37, 2144–2149 (1998).
[CrossRef]

Katagiri, Y.

Katayama, H.

H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
[CrossRef]

Kino, G. S.

I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
[CrossRef] [PubMed]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Kojima, K.

H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
[CrossRef]

Kurebayashi, M.

Laloë, F.

See, for example, C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Chap. 2, pp. 176–181.

Lee, K. S.

Lee, S. S.

Lin, L. Y.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Mansuripur, M.

Marchant, A. B.

A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, Reading, Mass., 1990), p. 83.

Masuhara, S.

A. Fukumoto, S. Kai, S. Masuhara, K. Aratani, “Magneto-optical detection using an optical phase shifter in higher track density land/groove recording,” Jpn. J. Appl. Phys. 37, 2144–2149 (1998).
[CrossRef]

McDaniel, T.

T. McDaniel, Y. Wang, “Coil for use with magneto-optical head,” U.S. patent5,903,525 (11May1999).

K. A. Belser, T. McDaniel, J. E. Davis, J. E. Hurst, “Magneto-resistive magneto-optical head,” U.S. patent5,889,641 (30March1999).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

Murakami, Y.

Nemoto, H.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Nguyen, T. H.

W. C. Tang, T. H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators 20, 25–32 (1989).
[CrossRef]

Nishihara, H.

T. Suhara, H. Nishihara, “Integrated-optic disc pickup devices using waveguide holographic components,” in Holographic Optics II: Principles and Applications, G. Morris, ed., Proc. SPIE1136, 92–99 (1989).

Noda, J.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Ohkubo, T.

Okamoto, K.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Opsasnick, M. N.

M. N. Opsasnick, D. D. Stancil, S. T. White, M. Tsai, “Optical fibers for magneto-optical recording,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 276–280 (1991).

Paratte, P.-A.

Petersen, K.

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

Pisano, A. P.

D. A. Horsley, A. Singh, A. P. Pisano, R. Horowitz, “Angular micropositioner for disk drives,” in Proceedings of the Tenth Annual International Workshop on MEMS (Asian Technology Information Program, Tokyo, 1997), pp. 454–459.

Ren, Z. B.

Renard, S.

S. Renard, S. Valette, “Magneto optical reading and writing integrated heads: a way to a multigigabyte multi-rigid-disk drive,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 238–247 (1991).

Robert, Ph.

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Ryan, A. T.

G. R. Gray, A. T. Ryan, G. P. Agrawal, E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
[CrossRef]

Saga, H.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Sato, J.

H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
[CrossRef]

Schmid, D. A.

W. D. Huber, D. A. Schmid, “High data rate magneto-optical recording,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 252–257 (2000).
[CrossRef]

Schuh, R. E.

Shan, X.

Shen, J. L.

Siddiqui, A. S.

Sincerbox, G. T.

G. T. Sincerbox, “Miniature optics for optical recording,” in Gradient-Index Optics and Miniature Optics, Vol. 935 of SPIE Critical Review Series, D. C. Lerner, J. D. Rees, eds. (SPIE, Bellingham, Wash., 1988), pp. 63–76.

Singh, A.

D. A. Horsley, A. Singh, A. P. Pisano, R. Horowitz, “Angular micropositioner for disk drives,” in Proceedings of the Tenth Annual International Workshop on MEMS (Asian Technology Information Program, Tokyo, 1997), pp. 454–459.

Smith, A. W.

Stancil, D. D.

M. N. Opsasnick, D. D. Stancil, S. T. White, M. Tsai, “Optical fibers for magneto-optical recording,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 276–280 (1991).

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Suhara, T.

T. Suhara, H. Nishihara, “Integrated-optic disc pickup devices using waveguide holographic components,” in Holographic Optics II: Principles and Applications, G. Morris, ed., Proc. SPIE1136, 92–99 (1989).

Sukeda, H.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Takahashi, M.

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Tanaka, Y.

Tang, W. C.

W. C. Tang, T. H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators 20, 25–32 (1989).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Tsai, M.

M. N. Opsasnick, D. D. Stancil, S. T. White, M. Tsai, “Optical fibers for magneto-optical recording,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 276–280 (1991).

Tselikov, A. A.

J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.

Ukita, H.

Valette, S.

S. Renard, S. Valette, “Magneto optical reading and writing integrated heads: a way to a multigigabyte multi-rigid-disk drive,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 238–247 (1991).

Wang, Y.

T. McDaniel, Y. Wang, “Coil for use with magneto-optical head,” U.S. patent5,903,525 (11May1999).

Wardas, M. A.

J. F. Heanue, M. A. Wardas, “High numerical aperture objective lens manufacturable in wafer form,” U.S. patent6,049,430 (11April2000).

White, S. T.

M. N. Opsasnick, D. D. Stancil, S. T. White, M. Tsai, “Optical fibers for magneto-optical recording,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 276–280 (1991).

Wilde, J. P.

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent5,940,549 (17August1999).

J. F. Heanue, J. P. Wilde, J. E. Hurst, J. H. Jerman, “Data storage system having an optical processing flying head,” U.S. patent6,034,938 (7March2000).

J. P. Wilde, J. E. Hurst, J. F. Heanue, “System and method using optical fibers in a data storage and retrieval system,” U.S. patent5,850,375 (15December1998).

J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.

Wu, M. C.

Yamamoto, M.

Yonezawa, S.

Yoshikawa, H.

Zhang, Y.

J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.

Appl. Opt.

Appl. Phys. Lett.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

IEEE Trans. Magn.

H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, “New developments in laser-assisted magnetic recording,” IEEE Trans. Magn. 36, 195–199 (2000).
[CrossRef]

J. Lightwave Technol.

R. E. Schuh, X. Shan, A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” J. Lightwave Technol. 16, 1583–1588 (1998).
[CrossRef]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

A. Fukumoto, S. Kai, S. Masuhara, K. Aratani, “Magneto-optical detection using an optical phase shifter in higher track density land/groove recording,” Jpn. J. Appl. Phys. 37, 2144–2149 (1998).
[CrossRef]

H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
[CrossRef]

Opt. Eng.

G. R. Gray, A. T. Ryan, G. P. Agrawal, E. C. Gage, “Control of optical-feedback-induced laser intensity noise in optical data recording,” Opt. Eng. 32, 739–745 (1993).
[CrossRef]

Opt. Lett.

Sens. Actuators

W. C. Tang, T. H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators 20, 25–32 (1989).
[CrossRef]

Other

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, K. Petersen, T. McDaniel, J. Drazan, “Flying optical head with dynamic mirror,” U.S. patent6,044,056 (28March2000).

See, for example, the 3M Specialty Single-Mode Fiber: 3M™ Single-Polarization Fibers, Product Data Application Note (3M Specialty Optical Fibers, West Haven, Conn., 1995).

A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, Reading, Mass., 1990), p. 83.

See, for example, PSD devices made by Hamamatsu Photonics ( www.hamamatsu.com ). The PSD used here is a custom part made for Quinta/Seagate by Hamamatsu Corp., San Jose, Calif.

J. F. Heanue, J. P. Wilde, J. E. Hurst, J. H. Jerman, “Data storage system having an optical processing flying head,” U.S. patent6,034,938 (7March2000).

The vector diffraction modeling is carried out with DIFFRACT (a product of MM Research, Tucson, Ariz.) in combination with Delta (supplied by L. Li, University of Arizona, Tucson, Ariz.).

W. D. Huber, D. A. Schmid, “High data rate magneto-optical recording,” in Optical Data Storage 2000, D. G. Stinson, R. Katayama, eds., Proc. SPIE4090, 252–257 (2000).
[CrossRef]

T. McDaniel, Y. Wang, “Coil for use with magneto-optical head,” U.S. patent5,903,525 (11May1999).

J. Drake, H. Jerman, “A micromachined torsional mirror for track following in magneto-optical disk drives,” in 2000 Solid-State Sensor and Actuator Workshop, Technical Digest (Transducers Research Foundation, Inc., Cleveland, Ohio, 2000), p. 10.

The microlenses were fabricated by Geltech Inc., Orlando, Fla. ( www.geltech.com ).

See, for example, the various microlens arrays made by MEMS Optical, LLC (Huntsville, Ala.) on their website www.memsoptical.com .

J. F. Heanue, M. A. Wardas, “High numerical aperture objective lens manufacturable in wafer form,” U.S. patent6,049,430 (11April2000).

The CircuLaser diode is manufactured by Blue Sky Research, San Jose, Calif. ( www.blueskyresearch.com ).

Tokin America Inc., San Jose, Calif. ( www.tokin.com ).

See, for example, C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Chap. 2, pp. 176–181.

E. C. Gage, “Apparatus and method for optimizing performance in an optical storage system read/write head,” U.S. patent5,347,297 (13September1994).

See, for example, the product guide for Meadowlark Optics, Frederick, Colo. ( www.meadowlark.com ).

D. A. Horsley, A. Singh, A. P. Pisano, R. Horowitz, “Angular micropositioner for disk drives,” in Proceedings of the Tenth Annual International Workshop on MEMS (Asian Technology Information Program, Tokyo, 1997), pp. 454–459.

M. N. Opsasnick, D. D. Stancil, S. T. White, M. Tsai, “Optical fibers for magneto-optical recording,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 276–280 (1991).

Quinta/Seagate demonstrated various versions of the OAW drive technology at COMDEX 1998, Las Vegas, Nev., November1998.

G. T. Sincerbox, “Miniature optics for optical recording,” in Gradient-Index Optics and Miniature Optics, Vol. 935 of SPIE Critical Review Series, D. C. Lerner, J. D. Rees, eds. (SPIE, Bellingham, Wash., 1988), pp. 63–76.

K. A. Belser, T. McDaniel, J. E. Davis, J. E. Hurst, “Magneto-resistive magneto-optical head,” U.S. patent5,889,641 (30March1999).

T. Suhara, H. Nishihara, “Integrated-optic disc pickup devices using waveguide holographic components,” in Holographic Optics II: Principles and Applications, G. Morris, ed., Proc. SPIE1136, 92–99 (1989).

S. Renard, S. Valette, “Magneto optical reading and writing integrated heads: a way to a multigigabyte multi-rigid-disk drive,” in Optical Data Storage 1991, J. J. Burke, T. A. Shull, N. Imamura, eds., Proc. SPIE1499, 238–247 (1991).

J. P. Wilde, A. A. Tselikov, G. R. Gray, Y. Zhang, S. Gangopadhyay, “Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations,” to be submitted to Appl. Opt.

J. P. Wilde, J. E. Hurst, J. F. Heanue, “System and method using optical fibers in a data storage and retrieval system,” U.S. patent5,850,375 (15December1998).

J. P. Wilde, J. E. Davis, J. E. Hurst, J. F. Heanue, J. Drazan, “Optical system and method using optical fibers for storage and retrieval of information,” U.S. patent5,940,549 (17August1999).

J. Davis, “Beyond the superparamagnetic limit. II: Far-field recording,” in Data Storage (PennWell, Amsterdam, The Netherlands, 1998), pp. 33–36.

M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge U. Press, Cambridge, UK, 1995).
[CrossRef]

T. W. McDaniel, R. H. Victora, eds., Handbook of Magneto-Optical Data Recording (Noyes, Westwood, N.J., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

General approach to the OAW drive architecture with multiple flying optical heads based on single-mode fiber light delivery.

Fig. 2
Fig. 2

Top view of the 5.25-in. (13.33-cm), half-height OAW drive layout.

Fig. 3
Fig. 3

Optical path based on PM fiber. Various lenses are not shown for simplicity. PBS, polarizing beam splitter.

Fig. 4
Fig. 4

Optical path based on Lo-Bi fiber. Various lenses are not shown for simplicity.

Fig. 5
Fig. 5

Ray trace for the optical head with PM fiber. Rotation of the torsional microelectromechanical system (MEMS) mirror produces beam steering of the focused spot (into and out of the page) for track following.

Fig. 6
Fig. 6

Silicon mirror chip containing a surface micromachined torsional mirror for track following and short seeks. Photograph courtesy of J. Drake.

Fig. 7
Fig. 7

Exploded view of the head assembly. Drawing courtesy of M. Darling.

Fig. 8
Fig. 8

Spot size (full width at half-maximum) versus focus offset for the 0.71-N.A. head with λ = 660 nm.

Fig. 9
Fig. 9

Normalized fiber backcoupling and Strehl ratio versus focus offset.

Fig. 10
Fig. 10

Wave-front error versus radial spot displacement. A 3-µm displacement corresponds to slightly more than four data tracks.

Fig. 11
Fig. 11

Illustration of the head-gimbal assembly showing the head mounted on a suspension. Drawing courtesy of M. Darling.

Fig. 12
Fig. 12

Illustration of the fiber bundle switch principle. We performed the switching by varying the incoming angle of a plane wave at the front focal plane of a GRIN lens and placing the fiber bundle in the back focal plane. For a 0.25-pitch GRIN lens, the front and back focal planes correspond to the front and back surfaces of the lens.

Fig. 13
Fig. 13

Photomicrograph of a PM fiber bundle [polarization- maintaining and absorption-reducing (PANDA) style] with 14 fibers. The fiber cladding diameter is 80 µm, making the bundle diameter approximately 300 µm.

Fig. 14
Fig. 14

Ray trace of the bundle switch in two different positions showing how the position sensing device (PSD) is used to determine mirror orientation. Only a 1-D beam-steering configuration is shown for simplicity. After initial calibration, a servo loop drives the system to the specific PSD value that corresponds to the active fiber. Recalibration takes place as needed.

Fig. 15
Fig. 15

Contour plot of the fiber-coupling efficiency as a function of the focused spot location in the back focal plane of the GRIN lens (for the optical path comprising ideal components in their nominal positions). The spot center is defined by the intersection of the chief ray with the focal plane. The fiber bundle area is indicated with a dashed circle, showing good coupling uniformity in this region.

Fig. 16
Fig. 16

Exploded view of the entire FOM. Drawing courtesy of M. Darling.

Fig. 17
Fig. 17

Fully assembled FOM measuring 2 in. (5 cm) (length) by 1 in. (2.5 cm) (width) by 1 in. (2.5 cm) (height). Drawing courtesy of M. Darling.

Fig. 18
Fig. 18

Graph of the average coupling efficiency across all 14 fibers as a function of the fiber bundle collimator offset in the transverse x direction. The calculated efficiency is scaled by 0.864 to fit the experimental data. The results show that the average efficiency can be maintained within 2% of its peak value if the collimator is positioned with an accuracy of ±25 µm in the transverse direction. Experimental data were provided by H. Lee.

Fig. 19
Fig. 19

Graph of the average coupling efficiency across all 14 fibers as a function of the fiber bundle collimator offset in the longitudinal z direction. The calculated efficiency is scaled by 0.864 to fit the experimental data. The results show that the average efficiency can be maintained within 2% of its peak value if the collimator is positioned with an accuracy of ±250 µm along the optical axis. Experimental data were provided by H. Lee.

Fig. 20
Fig. 20

Fully assembled 5.25-in. (13.33-cm), half-height OAW drive (without the top cover). Drawing courtesy of M. Darling.

Fig. 21
Fig. 21

Plot of the modeled sum signal, including fiber backcoupling, as the 0.71-N.A. focused spot (λ = 660 nm) traverses a groove.45 The signal is normalized by the power incident on the disk, and the return path contains a LBS with a 30% reflectivity for p-polarized light. The groove is assumed to be trapezoidal with a width of 0.35 µm at the top surface, a depth of λ/4, and a wall angle of 65 deg. The surface is coated conformally with a quadrilayer MO structure [SiN (55 nm)/TbFeCo (20 nm)/SiN (10 nm)/Al (40 nm)]. The response for polarizations parallel and perpendicular to the groove are seen to be very different.

Fig. 22
Fig. 22

Plot of the modeled sum signal, including fiber backcoupling, versus polarization angle when the focused spot is located at the groove center. The signal is normalized by the power incident on the disk. The optical system and media parameters are the same as those for Fig. 21.

Fig. 23
Fig. 23

Photomicrograph of the embossed servo wedge pattern. Courtesy of N. Deeman.

Fig. 24
Fig. 24

Sum signal corresponding to the servo pattern of Fig. 23. Courtesy of A. Fennema and G. Szita. ID, identification.

Fig. 25
Fig. 25

Roll-off curve showing the SNR versus the mark size for the 0.71-N.A. OAW head. These data correspond to a spot size of 0.57 µm, a media velocity of 15 m/s, and a bandwidth of 58 MHz. Data courtesy of S. Hallstein.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Einput=1211,
Sfiber=100α,
SQWP145°=121-i-i1.
ExEydisk=SQWP145°SfiberEinput=121-iα-i+α=11+iα*1+ImαReα=11+i exp-iΔϕ1+sinΔϕcosΔϕ.
Sdiskθ=Rdcos θsin θsin θ-cos θ.
S=ABCDforward path  S˜=A-C-BDreturn path.
Eoutθ=0°=S˜fiberS˜QWP145°Sdisk0Edisk=-iαRd21-1.
Eoutθ=-iαRd2expiθ-exp-iθ.
Rψ=cos ψsin ψ-sin ψcos ψ.
Eˆoutθ=R-45°Eoutθ=-iαRdcos θi sin θ.
SLBS=Rx001 for reflection,
SQWP20°=100i,
EˆQWP2θ=SQWP20°SLBSEˆoutθ=-iαRdRx cos θ-sin θ,
Edetectθ=R45°EˆQWP2θ=iαRd2-Rx cos θ+sin θRx cos θ+sin θ.
Vdiffθ  |Edetect, y|2-|Edetect, x|2=2RdRx cos θ sin θ2RdRx θ  for small θ.
Vsum  |Edetect, x|2+|Edetect, y|2=RdRx cos2 θ+sin2 θRdRx.
Edetectθ=SQWP245°SLBSEˆoutθ=-iαRd2Rx cos θ-sin θiRx cos θ+sin θ.
Ephaseψ=cos 2ψsin 2ψsin 2ψ-cos 2ψ121i+121-i=expi2ψ21-i+exp-i2ψ21i.

Metrics