Abstract

Incoherent-to-coherent conversion by use of the photorefractive beam-fanning effect and amplification by two-wave coupling have been demonstrated experimentally in a photorefractive Ba1-xSrxTiO3 crystal. The converted coherent image is amplified by 60×. The resolution of the amplified coherent image is ∼28 line pairs/mm. A notable advantage of the method is that incoherent-to-coherent conversion and coherence amplification of the converted coherent image are realized simultaneously in a photorefractive crystal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kamshilin, M. P. Petrov, “Holographic image conversion in a Bi12SiO20 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).
  2. M. B. Klein, G. J. Dunning, G. C. Vally, R. C. Lind, T. R. O’Meara, “Imaging threshold detecter using a phase-conjugate resonator in BaTiO3,” Opt. Lett. 11, 575–577 (1986).
    [CrossRef] [PubMed]
  3. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3667 (1983).
    [CrossRef] [PubMed]
  4. E. J. Sharp, G. L. Wood, W. W. Clark, G. J. Salamo, R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
    [CrossRef] [PubMed]
  5. E. Voit, P. Gunter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystal,” Opt. Lett. 12, 769–771 (1987).
    [CrossRef] [PubMed]
  6. C.-C. Sun, M.-W. Chang, K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter by using an anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993).
    [CrossRef] [PubMed]
  7. J. Zhang, H. Wang, S. Yoshikado, T. Aruga, “Incoherent-to-coherent conversion by use of the photorefractive fanning effect,” Opt. Lett. 21, 1612–1614 (1997).
    [CrossRef]
  8. D. Tonchev, S. Zhivkova, V. Marinova, N. Metchkarov, “Long-term readout memory realized in a Bi12TiO20 crystal,” in 10th International School on Quantum Electronics: Laser Physics and Applications, D. V. Stoyanov, ed., Proc. SPIE3571, 378–382 (1999).
  9. J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
    [CrossRef]

1997 (1)

1993 (1)

1992 (1)

1991 (1)

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

1987 (1)

1986 (1)

1983 (1)

1980 (1)

A. A. Kamshilin, M. P. Petrov, “Holographic image conversion in a Bi12SiO20 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

Aruga, T.

Chang, M.-W.

Clark, W. W.

Dunning, G. J.

Gao, X.-C.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Gunter, P.

Guo, X.-B.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Hsu, K. Y.

Huang, Y.-H.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Kamshilin, A. A.

A. A. Kamshilin, M. P. Petrov, “Holographic image conversion in a Bi12SiO20 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

Klein, M. B.

Li, G.-S.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Lind, R. C.

Lu, J.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Marinova, V.

D. Tonchev, S. Zhivkova, V. Marinova, N. Metchkarov, “Long-term readout memory realized in a Bi12TiO20 crystal,” in 10th International School on Quantum Electronics: Laser Physics and Applications, D. V. Stoyanov, ed., Proc. SPIE3571, 378–382 (1999).

Marrakchi, A.

Metchkarov, N.

D. Tonchev, S. Zhivkova, V. Marinova, N. Metchkarov, “Long-term readout memory realized in a Bi12TiO20 crystal,” in 10th International School on Quantum Electronics: Laser Physics and Applications, D. V. Stoyanov, ed., Proc. SPIE3571, 378–382 (1999).

Neurgaonkar, R. R.

O’Meara, T. R.

Petrov, M. P.

A. A. Kamshilin, M. P. Petrov, “Holographic image conversion in a Bi12SiO20 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

Psaltis, D.

Salamo, G. J.

Sharp, E. J.

Shi, Y.

Shi, Z.-Z.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Sun, C.-C.

Tanguay, A. R.

Tonchev, D.

D. Tonchev, S. Zhivkova, V. Marinova, N. Metchkarov, “Long-term readout memory realized in a Bi12TiO20 crystal,” in 10th International School on Quantum Electronics: Laser Physics and Applications, D. V. Stoyanov, ed., Proc. SPIE3571, 378–382 (1999).

Vally, G. C.

Voit, E.

Wang, H.

Weng, Y.-Y.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Wood, G. L.

Yoshikado, S.

Zhang, J.

Zhivkova, S.

D. Tonchev, S. Zhivkova, V. Marinova, N. Metchkarov, “Long-term readout memory realized in a Bi12TiO20 crystal,” in 10th International School on Quantum Electronics: Laser Physics and Applications, D. V. Stoyanov, ed., Proc. SPIE3571, 378–382 (1999).

Zhuang, J.

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Appl. Opt. (1)

Opt. Commun. (1)

J. Zhuang, G.-S. Li, X.-C. Gao, X.-B. Guo, Y.-H. Huang, Z.-Z. Shi, Y.-Y. Weng, J. Lu, “Preparation and photorefractive properties of barium strontium titanate (Ba1-xSrxTiO3),” Opt. Commun. 82, 69–72 (1991).
[CrossRef]

Opt. Lett. (5)

Sov. Tech. Phys. Lett. (1)

A. A. Kamshilin, M. P. Petrov, “Holographic image conversion in a Bi12SiO20 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

Other (1)

D. Tonchev, S. Zhivkova, V. Marinova, N. Metchkarov, “Long-term readout memory realized in a Bi12TiO20 crystal,” in 10th International School on Quantum Electronics: Laser Physics and Applications, D. V. Stoyanov, ed., Proc. SPIE3571, 378–382 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup demonstrating the principle of incoherent-to-coherent conversion by use of the photorefractive beam-fanning effect and amplification by two-wave coupling in a Ba1-x Sr x TiO3 crystal: PR, polarization rotator; BS’s, beam splitters; T, resolution chart; L1, L2, lenses with focal lengths of 150 mm; M’s, mirrors; S, screen; BST, Ba1-x Sr x TiO3 crystal.

Fig. 2
Fig. 2

(a) Time evolutions of power P t of the transmitted coherent read beam and power P α of its fanning beams for I co = 20 mW/cm2 and θ = 50° when the incoherent beam and the coherent coupled beam are blocked. (b) Steady-state transmission of the coherent read beam versus its external incident angle θ (we define the transmission at t = 0 as 100%). (c) The 1/e decay time of the coherent read beam versus its average intensity for θ = 50°.

Fig. 3
Fig. 3

Transmission of the coherent read beam versus intensity ratio β of the incoherent beam to the coherent read beam for θ = 50° and I co = 10 mW/cm2.

Fig. 4
Fig. 4

(a) Incoherent input image, (b) converted coherent image without magnification, (c) amplified coherent image for Φ = 61° and I R = 300mW/cm2.

Fig. 5
Fig. 5

Temporal evolution of the amplified coherent image by two-wave coupling.

Metrics