Abstract

We investigated the temporal evolution of light-induced scattering in LiNbO3:Fe,In crystals with different doping concentrations. A special behavior of the beam fanning was found when the intensity of the incident light was relatively weak. In this case the beam fanning became stronger at the beginning of the illumination and then was greatly reduced, which was observed only at strong incident light intensities. This phenomenon was analyzed on the basis of the saturation space-charge field. The intensity threshold effect and the concentration threshold effect were successfully explained.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–486 (1989).
    [CrossRef]
  2. J. Joseph, P. K. C. Pillai, K. Singh, “High-gain, low-noise signal beam amplification in photorefractive BaTiO3,” Appl. Opt. 30, 3315–3318 (1991).
    [CrossRef] [PubMed]
  3. Q. B. He, P. Yeh, “Fanning noise reduction in photorefractive amplifiers using incoherent erasures,” Appl. Opt. 33, 283–287 (1994).
    [CrossRef] [PubMed]
  4. G. Q. Zhang, S. M. Liu, G. Y. Tian, J. Xu, Q. Sun, G. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
    [CrossRef] [PubMed]
  5. G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).
  6. N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
    [CrossRef]
  7. T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
    [CrossRef]
  8. P. Gunter, J. P. Huignard, eds., Photorefractive Materials and Their Applications II, Vol. 61 of Springer Series in Topics in Applied Physics (Springer-Verlag, Berlin, 1989), p. 24.
  9. M. Horowitz, R. Daisy, B. Fischer, “Signal-to-pump ratio dependence of buildup and decay rates in photorefractive nonlinear two-beam coupling,” J. Opt. Soc. Am. B 9, 1685–1688 (1992).
    [CrossRef]

2000 (1)

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

1997 (1)

1995 (1)

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (1)

1989 (1)

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–486 (1989).
[CrossRef]

Bower, R.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Daisy, R.

Fang, Q.

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

Fischer, B.

Fisher, C.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

He, Q. B.

Horowitz, M.

Jermann, F.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Joseph, J.

Kamber, N. Y.

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

Liu, S.

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

Liu, S. M.

Ma, C.

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

Mikha, S. M.

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

Pillai, P. K. C.

Razumovski, N. V.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Rubinina, N.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Singh, K.

Sun, Q.

G. Q. Zhang, S. M. Liu, G. Y. Tian, J. Xu, Q. Sun, G. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

Tian, G. Y.

Volk, T.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Wohlecke, M.

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Xu, J.

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

G. Q. Zhang, S. M. Liu, G. Y. Tian, J. Xu, Q. Sun, G. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

Yeh, P.

Zhang, G.

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

G. Q. Zhang, S. M. Liu, G. Y. Tian, J. Xu, Q. Sun, G. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

Zhang, G. Q.

Appl. Opt. (3)

Appl. Phys. A (1)

T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fisher, R. Bower, “LiNbO3 with damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–486 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, S. Liu, G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals,” Opt. Commun. 176, 91–96 (2000).
[CrossRef]

Other (2)

G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering,” in Photoreactive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995).

P. Gunter, J. P. Huignard, eds., Photorefractive Materials and Their Applications II, Vol. 61 of Springer Series in Topics in Applied Physics (Springer-Verlag, Berlin, 1989), p. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Temporal evolution of the transmitted light I t in LiNbO3 (0.03-wt. % Fe, 0.6-mol. % In) under different incident light intensities I 0: (a) I 0 ∼ 3.7 mW/cm2, (b) I 0 ∼ 73 mW/cm2, (c) I 0 ∼ 1.9 W/cm2.

Fig. 2
Fig. 2

Pictures of the fanning light pattern as described in curve c of Fig. 1 taken at different illumination time t: (a) t = 0 s, (b) t = 50 s, (c) t = 1500 s.

Fig. 3
Fig. 3

Temporal evolution of the transmitted light I t under incident light intensity I 0 = 58 mW/cm2 in LiNbO3 (0.03-wt. % Fe,In): (a) doped with 3.5-mol. % In, (b) doped with 2.6-mol. % In, (c) doped with 0.6-mol. % In.

Fig. 4
Fig. 4

Temporal evolution of the perturbations of the refractive index at one illumination location.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ix=Ip+Is1+m cosKx,
Δnt, x=Δn0t, x+Δn1t, xcosKx+ϕ,
Esat=eNA/K0,
Δnsat=12 n03 reff Esat,

Metrics