Abstract

We have developed a novel, low-cost, and effective technique for display resolution and fill-factor enhancement. By using optical scanners with fast nematic liquid-crystal polarization switches and birefringent materials, we have increased the perceived pixel count of a low-resolution display and also its display fill factor. The resulting display resolution was quadrupled by the optical scanners without increasing the display die sizes or input–output counts. The display optical system architecture, scanner design, packaging, and experimental results of the display system performance are discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jewell, G. R. Olbright, “Vertical-cavity surface emitting laser assay display system,” U.S. patent5,325,386 (28June1994).
  2. L. Poletto, P. Nicolosi, “Enhancing the spatial resolution of a two-dimensional discrete array detector,” Opt. Eng. 38, 1748–1757 (1999).
    [CrossRef]
  3. Y. Koo, W. Kim, “An image enhancing technique using adaptive sub-pixel interpolation for digital still camera system,” IEEE Trans. Consumer Electron. 45, 118–123 (1999).
    [CrossRef]
  4. V. Laude, C. Dirson, “Liquid-crystal active lens: application to image resolution enhancement,” Opt. Commun. 163, 72–78 (1999).
    [CrossRef]
  5. P. Buser, Vision (MIT, Cambridge, Mass., 1992), p. 134.
  6. A. B. Watson, A. J. Ahumada, J. E. Farrell, “Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,” J. Opt. Soc. Am. A 3, 300–307 (1986).
    [CrossRef]
  7. P. J. Bos, K. R. Koehler, “The pi-cell: a fast liquid crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
    [CrossRef]
  8. P. J. Bos, “Rapid starting, high-speed liquid crystal variable optical retarder,” U.S. patent4,566,758 (28January1986).

1999 (3)

L. Poletto, P. Nicolosi, “Enhancing the spatial resolution of a two-dimensional discrete array detector,” Opt. Eng. 38, 1748–1757 (1999).
[CrossRef]

Y. Koo, W. Kim, “An image enhancing technique using adaptive sub-pixel interpolation for digital still camera system,” IEEE Trans. Consumer Electron. 45, 118–123 (1999).
[CrossRef]

V. Laude, C. Dirson, “Liquid-crystal active lens: application to image resolution enhancement,” Opt. Commun. 163, 72–78 (1999).
[CrossRef]

1986 (1)

1984 (1)

P. J. Bos, K. R. Koehler, “The pi-cell: a fast liquid crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

Ahumada, A. J.

Bos, P. J.

P. J. Bos, K. R. Koehler, “The pi-cell: a fast liquid crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

P. J. Bos, “Rapid starting, high-speed liquid crystal variable optical retarder,” U.S. patent4,566,758 (28January1986).

Buser, P.

P. Buser, Vision (MIT, Cambridge, Mass., 1992), p. 134.

Dirson, C.

V. Laude, C. Dirson, “Liquid-crystal active lens: application to image resolution enhancement,” Opt. Commun. 163, 72–78 (1999).
[CrossRef]

Farrell, J. E.

Jewell, J. L.

J. L. Jewell, G. R. Olbright, “Vertical-cavity surface emitting laser assay display system,” U.S. patent5,325,386 (28June1994).

Kim, W.

Y. Koo, W. Kim, “An image enhancing technique using adaptive sub-pixel interpolation for digital still camera system,” IEEE Trans. Consumer Electron. 45, 118–123 (1999).
[CrossRef]

Koehler, K. R.

P. J. Bos, K. R. Koehler, “The pi-cell: a fast liquid crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

Koo, Y.

Y. Koo, W. Kim, “An image enhancing technique using adaptive sub-pixel interpolation for digital still camera system,” IEEE Trans. Consumer Electron. 45, 118–123 (1999).
[CrossRef]

Laude, V.

V. Laude, C. Dirson, “Liquid-crystal active lens: application to image resolution enhancement,” Opt. Commun. 163, 72–78 (1999).
[CrossRef]

Nicolosi, P.

L. Poletto, P. Nicolosi, “Enhancing the spatial resolution of a two-dimensional discrete array detector,” Opt. Eng. 38, 1748–1757 (1999).
[CrossRef]

Olbright, G. R.

J. L. Jewell, G. R. Olbright, “Vertical-cavity surface emitting laser assay display system,” U.S. patent5,325,386 (28June1994).

Poletto, L.

L. Poletto, P. Nicolosi, “Enhancing the spatial resolution of a two-dimensional discrete array detector,” Opt. Eng. 38, 1748–1757 (1999).
[CrossRef]

Watson, A. B.

IEEE Trans. Consumer Electron. (1)

Y. Koo, W. Kim, “An image enhancing technique using adaptive sub-pixel interpolation for digital still camera system,” IEEE Trans. Consumer Electron. 45, 118–123 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mol. Cryst. Liq. Cryst. (1)

P. J. Bos, K. R. Koehler, “The pi-cell: a fast liquid crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

Opt. Commun. (1)

V. Laude, C. Dirson, “Liquid-crystal active lens: application to image resolution enhancement,” Opt. Commun. 163, 72–78 (1999).
[CrossRef]

Opt. Eng. (1)

L. Poletto, P. Nicolosi, “Enhancing the spatial resolution of a two-dimensional discrete array detector,” Opt. Eng. 38, 1748–1757 (1999).
[CrossRef]

Other (3)

J. L. Jewell, G. R. Olbright, “Vertical-cavity surface emitting laser assay display system,” U.S. patent5,325,386 (28June1994).

P. Buser, Vision (MIT, Cambridge, Mass., 1992), p. 134.

P. J. Bos, “Rapid starting, high-speed liquid crystal variable optical retarder,” U.S. patent4,566,758 (28January1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Four pixels were formed from one original pixel by use of optical scanning, and the display fill factor was increased fourfold. The display resolution was quadrupled without increasing the display die size or number of interconnects.

Fig. 2
Fig. 2

Resolution of the output image that was doubled by use of one polarization switch and one piece of birefringent crystal when the polarization switch was synchronized with input image signals.

Fig. 3
Fig. 3

Assembly of a liquid-crystal quadrupler. A resolution quadrupler consists of one polarizer, two polarization control switches, and two pieces of birefringent crystal.

Fig. 4
Fig. 4

Measured response time as a function of temperature for the polarization switch.

Fig. 5
Fig. 5

Measured contrast as a function of bias voltage and temperature for the polarization switch. pk–pk, peak to peak.

Fig. 6
Fig. 6

Photograph of the compact package for a resolution quadrupler (compared with a U.S. dime).

Fig. 7
Fig. 7

Drive waveform for one scanning cycle. See text for details.

Fig. 8
Fig. 8

(a) Experimental image result without a resolution quadrupler. (b) Experimental image result with a resolution quadrupler.

Fig. 9
Fig. 9

Measured luminance of a VirtuoVue display as a function of clock frequency.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d=t tanρ,
ρ=arctantan θ no2ne2,

Metrics