Abstract

Imaging of tissue with near-infrared spectral tomography is emerging as a practicable method to map hemoglobin concentrations within tissue. However, the accurate recovery of images by using modeling methods requires a good match between experiments and the model prediction of light transport in tissue. We illustrate the potential for a match between (i) three-dimensional (3-D) frequency-domain diffusion theory, (ii) two-dimensional diffusion theory, (iii) Monte Carlo simulations, and (iv) experimental data from tissue-simulating phantoms. Robin-type boundary conditions are imposed in the 3-D model, which can be implemented with a scalar coupling coefficient relating the flux through the surface to the diffuse fluence rate at the same location. A comparison of 3-D mesh geometries for breast imaging indicates that relative measurements are sufficiently similar when calculated on either cylindrical or female breast shapes, suggesting that accurate reconstruction may be achieved with the simpler cylindrical mesh. Simulation studies directly assess the effects from objects extending out of the image plane, with results suggesting that spherically shaped objects reconstruct at lower contrast when their diameters are less than 15–20 mm. The algorithm presented here illustrates that a 3-D forward diffusion model can be used with circular tomographic measurements to reconstruct two-dimensional images of the interior absorption coefficient.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Mueller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).
  2. B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
    [CrossRef]
  3. S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
    [CrossRef] [PubMed]
  4. H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  5. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
    [CrossRef] [PubMed]
  6. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  7. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  8. K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996).
    [CrossRef] [PubMed]
  9. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  10. B. W. Pogue, T. McBride, U. Osterberg, K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999).
    [CrossRef]
  11. T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  12. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).
  13. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  14. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
    [CrossRef]
  15. D. T. Delpy, M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London Ser. B. 352, 649–659 (1997).
    [CrossRef]
  16. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
    [CrossRef]
  17. W. Zhu, Y. Wang, Y. Yao, J. Chang, H. L. Graber, R. L. Barbour, “Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method,” J. Opt. Soc. Am. A 14, 799–807 (1997).
    [CrossRef]
  18. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
    [CrossRef]
  19. M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
    [CrossRef]
  20. A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
    [CrossRef] [PubMed]
  21. B. C. Wilson, M. S. Patterson, S. T. Flock, J. D. Moulton, “The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range,” in Light in Biology and Medicine, M. D. Dall’Acqua, ed. (Plenum, New York, 1988), pp. 45–52.
    [CrossRef]
  22. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  23. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  24. R. A. J. Groenhuis, H. A. Ferwerda, J. J. ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. I. Theory,” Appl. Opt. 22, 2456–2462 (1983).
    [CrossRef] [PubMed]
  25. M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium Digest (IEEE, New York, 1991), pp. 905–908.
  26. J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal-reflection of diffusive light in random-media,” Phys. Rev. A. 44, 3948–3959 (1991).
    [CrossRef] [PubMed]
  27. I. Freund, “Surface reflections and boundary-conditions for diffusive photon transport,” Phys. Rev. A 45, 8854–8858 (1992).
    [CrossRef] [PubMed]
  28. C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
    [CrossRef]
  29. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  30. A. H. Hielscher, L. Wang, K. Tittel, S. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
    [CrossRef] [PubMed]
  31. R. Aronson, “Boundary-conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
    [CrossRef]
  32. J. C. J. Paasschens, G. W. ’t Hooft, “Influence of boundaries on the imaging of objects in turbid media,” J. Opt. Soc. Am. A 15, 1797–1812 (1998).
    [CrossRef]
  33. K. D. Paulsen, H. B. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  34. M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [CrossRef]
  35. B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
    [CrossRef] [PubMed]
  36. B. W. Pogue, M. S. Patterson, “Frequency domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
    [CrossRef] [PubMed]
  37. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 133–138.
  38. J. B. Fishkin, S. Fantini, M. J. VandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E. 53, 2307–2319 (1996).
    [CrossRef]
  39. J. D. Moulton, “Diffusion theory modeling of picosecond laser pulse propagation in turbid media” (Physics Department, McMaster University, Hamilton, Canada, 1990).
  40. L. L. Lapidus, G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley, New York, 1999).
    [CrossRef]
  41. R. Saxena, T. S. Keller, J. M. Sullivan, “A three-dimensional finite element scheme to investigate apparent mechanical properties of trabecular bone,” Comp. Meth. Biomech. Biomed. Eng. 2, 285–294 (1999).
    [CrossRef]
  42. K. D. Paulsen, X. Jia, J. M. Sullivan, “Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis,” IEEE Trans. Biomed. Eng. 40, 933–945 (1993).
    [CrossRef] [PubMed]
  43. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  44. T. O. McBride, S. Jiang, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. (to be published).
  45. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  46. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  47. B. W. Pogue, “Frequency-domain optical spectroscopy and imaging of tissue and tissue-simulating media” (Physics Department, McMaster University, Hamilton, Canada, 1996).
  48. M. Testorf, U. L. Osterberg, B. W. Pogue, K. D. Paulsen, “Sampling of time and frequency domain signals in Monte Carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).
    [CrossRef]
  49. B. W. Pogue, T. Momma, H. Wu, T. Hasan are preparing a manuscript to be called “Investigation of transient absorption in vivo during photodynamic therapy with pulsed laser light.”
  50. S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
    [CrossRef] [PubMed]
  51. T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXII, J. Dunn, H. Swartz, eds. (Pabst, Lengerich, Germany, 2001).
  52. B. W. Pogue, K. D. Paulsen, H. Kaufman, C. Abele, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 182–193 (2000).
  53. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
    [CrossRef]
  54. M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (Springer, New York, 1997), pp. 71–84.
    [CrossRef]
  55. M. Schweiger, S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue,” Appl. Opt. 36, 9042–9049 (1997).
    [CrossRef]

2001

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

2000

B. W. Pogue, K. D. Paulsen, H. Kaufman, C. Abele, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 182–193 (2000).

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

1999

M. Testorf, U. L. Osterberg, B. W. Pogue, K. D. Paulsen, “Sampling of time and frequency domain signals in Monte Carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

B. W. Pogue, T. McBride, U. Osterberg, K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

R. Saxena, T. S. Keller, J. M. Sullivan, “A three-dimensional finite element scheme to investigate apparent mechanical properties of trabecular bone,” Comp. Meth. Biomech. Biomed. Eng. 2, 285–294 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

1998

1997

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

W. Zhu, Y. Wang, Y. Yao, J. Chang, H. L. Graber, R. L. Barbour, “Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method,” J. Opt. Soc. Am. A 14, 799–807 (1997).
[CrossRef]

J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
[CrossRef]

D. T. Delpy, M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London Ser. B. 352, 649–659 (1997).
[CrossRef]

M. Schweiger, S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue,” Appl. Opt. 36, 9042–9049 (1997).
[CrossRef]

1996

1995

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. B. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

A. H. Hielscher, L. Wang, K. Tittel, S. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

R. Aronson, “Boundary-conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
[CrossRef]

1994

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

B. W. Pogue, M. S. Patterson, “Frequency domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

1993

K. D. Paulsen, X. Jia, J. M. Sullivan, “Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis,” IEEE Trans. Biomed. Eng. 40, 933–945 (1993).
[CrossRef] [PubMed]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

1992

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

I. Freund, “Surface reflections and boundary-conditions for diffusive photon transport,” Phys. Rev. A 45, 8854–8858 (1992).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

1991

1990

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989

1983

1973

’t Hooft, G. W.

Abele, C.

B. W. Pogue, K. D. Paulsen, H. Kaufman, C. Abele, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 182–193 (2000).

Alsop, D. C.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
[CrossRef]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Aronson, R.

Arridge, S. R.

Barbour, R. L.

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Chance, B.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
[CrossRef]

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chang, J.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cope, M.

D. T. Delpy, M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London Ser. B. 352, 649–659 (1997).
[CrossRef]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Delpy, D. T.

D. T. Delpy, M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London Ser. B. 352, 649–659 (1997).
[CrossRef]

Detre, J. A.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
[CrossRef]

Dougherty, D. E.

Duderstadt, J. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 133–138.

Eppstein, M. J.

Erdl, H.

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Fantini, S.

J. B. Fishkin, S. Fantini, M. J. VandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E. 53, 2307–2319 (1996).
[CrossRef]

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Feng, T. C.

Ferwerda, H. A.

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

J. B. Fishkin, S. Fantini, M. J. VandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E. 53, 2307–2319 (1996).
[CrossRef]

Flock, S. T.

B. C. Wilson, M. S. Patterson, S. T. Flock, J. D. Moulton, “The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range,” in Light in Biology and Medicine, M. D. Dall’Acqua, ed. (Plenum, New York, 1988), pp. 45–52.
[CrossRef]

Francecshini, M. A.

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Freund, I.

I. Freund, “Surface reflections and boundary-conditions for diffusive photon transport,” Phys. Rev. A 45, 8854–8858 (1992).
[CrossRef] [PubMed]

Gerety, E.

Gonatas, C. P.

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

Graber, H. L.

Gratton, E.

J. B. Fishkin, S. Fantini, M. J. VandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E. 53, 2307–2319 (1996).
[CrossRef]

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Groenhuis, R. A. J.

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Haida, M.

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Hale, G. M.

Hamilton, L. J.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 133–138.

Hanson, K. M.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Hasan, T.

B. W. Pogue, T. Momma, H. Wu, T. Hasan are preparing a manuscript to be called “Investigation of transient absorption in vivo during photodynamic therapy with pulsed laser light.”

Haskell, R. C.

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

A. H. Hielscher, L. Wang, K. Tittel, S. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Ishii, M.

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

Jacques, S.

A. H. Hielscher, L. Wang, K. Tittel, S. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Jess, H.

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Jia, X.

K. D. Paulsen, X. Jia, J. M. Sullivan, “Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis,” IEEE Trans. Biomed. Eng. 40, 933–945 (1993).
[CrossRef] [PubMed]

Jiang, H.

K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Jiang, H. B.

K. D. Paulsen, H. B. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Jiang, S.

T. O. McBride, S. Jiang, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. (to be published).

Kaschke, M.

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Kaufman, H.

B. W. Pogue, K. D. Paulsen, H. Kaufman, C. Abele, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 182–193 (2000).

Keller, T. S.

R. Saxena, T. S. Keller, J. M. Sullivan, “A three-dimensional finite element scheme to investigate apparent mechanical properties of trabecular bone,” Comp. Meth. Biomech. Biomed. Eng. 2, 285–294 (1999).
[CrossRef]

Klose, A. D.

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Lapidus, L. L.

L. L. Lapidus, G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley, New York, 1999).
[CrossRef]

Leigh, J. S.

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

Luo, Q.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
[CrossRef]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium Digest (IEEE, New York, 1991), pp. 905–908.

McAdams, M. S.

McBride, T.

B. W. Pogue, T. McBride, U. Osterberg, K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
[CrossRef] [PubMed]

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXII, J. Dunn, H. Swartz, eds. (Pabst, Lengerich, Germany, 2001).

T. O. McBride, S. Jiang, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. (to be published).

Miwa, M.

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

Moes, C. J. M.

Moesta, T.

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

Momma, T.

B. W. Pogue, T. Momma, H. Wu, T. Hasan are preparing a manuscript to be called “Investigation of transient absorption in vivo during photodynamic therapy with pulsed laser light.”

Moulton, J. D.

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium Digest (IEEE, New York, 1991), pp. 905–908.

B. C. Wilson, M. S. Patterson, S. T. Flock, J. D. Moulton, “The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range,” in Light in Biology and Medicine, M. D. Dall’Acqua, ed. (Plenum, New York, 1988), pp. 45–52.
[CrossRef]

J. D. Moulton, “Diffusion theory modeling of picosecond laser pulse propagation in turbid media” (Physics Department, McMaster University, Hamilton, Canada, 1990).

Nioka, S.

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
[CrossRef]

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Orel, S.

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Osterberg, U.

B. W. Pogue, T. McBride, U. Osterberg, K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
[CrossRef] [PubMed]

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

M. Testorf, U. L. Osterberg, B. W. Pogue, K. D. Paulsen, “Sampling of time and frequency domain signals in Monte Carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

T. O. McBride, S. Jiang, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. (to be published).

Österberg, U. L.

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXII, J. Dunn, H. Swartz, eds. (Pabst, Lengerich, Germany, 2001).

Paasschens, J. C. J.

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, “Frequency domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, J. D. Moulton, “The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range,” in Light in Biology and Medicine, M. D. Dall’Acqua, ed. (Plenum, New York, 1988), pp. 45–52.
[CrossRef]

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium Digest (IEEE, New York, 1991), pp. 905–908.

Paulsen, K.

B. W. Pogue, T. McBride, U. Osterberg, K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
[CrossRef] [PubMed]

Paulsen, K. D.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, K. D. Paulsen, H. Kaufman, C. Abele, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 182–193 (2000).

M. Testorf, U. L. Osterberg, B. W. Pogue, K. D. Paulsen, “Sampling of time and frequency domain signals in Monte Carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. B. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, X. Jia, J. M. Sullivan, “Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis,” IEEE Trans. Biomed. Eng. 40, 933–945 (1993).
[CrossRef] [PubMed]

T. O. McBride, S. Jiang, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. (to be published).

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXII, J. Dunn, H. Swartz, eds. (Pabst, Lengerich, Germany, 2001).

Paulsen, L. D.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pinder, G. F.

L. L. Lapidus, G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley, New York, 1999).
[CrossRef]

Pine, D. J.

J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal-reflection of diffusive light in random-media,” Phys. Rev. A. 44, 3948–3959 (1991).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, K. D. Paulsen, H. Kaufman, C. Abele, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 182–193 (2000).

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

M. Testorf, U. L. Osterberg, B. W. Pogue, K. D. Paulsen, “Sampling of time and frequency domain signals in Monte Carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

B. W. Pogue, T. McBride, U. Osterberg, K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, “Frequency domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

B. W. Pogue, T. Momma, H. Wu, T. Hasan are preparing a manuscript to be called “Investigation of transient absorption in vivo during photodynamic therapy with pulsed laser light.”

B. W. Pogue, “Frequency-domain optical spectroscopy and imaging of tissue and tissue-simulating media” (Physics Department, McMaster University, Hamilton, Canada, 1996).

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXII, J. Dunn, H. Swartz, eds. (Pabst, Lengerich, Germany, 2001).

T. O. McBride, S. Jiang, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. (to be published).

Poplack, S.

Poplack, S. P.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Prewitt, J.

Querry, M. R.

S., O. K.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

Saxena, R.

R. Saxena, T. S. Keller, J. M. Sullivan, “A three-dimensional finite element scheme to investigate apparent mechanical properties of trabecular bone,” Comp. Meth. Biomech. Biomed. Eng. 2, 285–294 (1999).
[CrossRef]

Schotland, J.

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

Schotland, J. C.

Schweiger, M.

Sevick-Muraca, E. M.

Shnall, M.

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Sullivan, J. M.

R. Saxena, T. S. Keller, J. M. Sullivan, “A three-dimensional finite element scheme to investigate apparent mechanical properties of trabecular bone,” Comp. Meth. Biomech. Biomed. Eng. 2, 285–294 (1999).
[CrossRef]

K. D. Paulsen, X. Jia, J. M. Sullivan, “Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis,” IEEE Trans. Biomed. Eng. 40, 933–945 (1993).
[CrossRef] [PubMed]

Svaasand, L. O.

ten Bosch, J. J.

Testorf, M.

M. Testorf, U. L. Osterberg, B. W. Pogue, K. D. Paulsen, “Sampling of time and frequency domain signals in Monte Carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
[CrossRef] [PubMed]

Tittel, K.

A. H. Hielscher, L. Wang, K. Tittel, S. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Troy, T. L.

Tsay, T. T.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

VandeVen, M. J.

J. B. Fishkin, S. Fantini, M. J. VandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E. 53, 2307–2319 (1996).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Wang, L.

A. H. Hielscher, L. Wang, K. Tittel, S. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Wang, Y.

Weitz, D. A.

J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal-reflection of diffusive light in random-media,” Phys. Rev. A. 44, 3948–3959 (1991).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

Willscher, C.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

Wilson, B. C.

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, J. D. Moulton, “The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range,” in Light in Biology and Medicine, M. D. Dall’Acqua, ed. (Plenum, New York, 1988), pp. 45–52.
[CrossRef]

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium Digest (IEEE, New York, 1991), pp. 905–908.

Wu, H.

B. W. Pogue, T. Momma, H. Wu, T. Hasan are preparing a manuscript to be called “Investigation of transient absorption in vivo during photodynamic therapy with pulsed laser light.”

Wyman, D. R.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

Yao, Y.

Zhao, S.

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Zhu, J. X.

J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal-reflection of diffusive light in random-media,” Phys. Rev. A. 44, 3948–3959 (1991).
[CrossRef] [PubMed]

Zhu, W.

Adv. Exp. Med. Biol.

S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Appl. Opt.

K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

R. A. J. Groenhuis, H. A. Ferwerda, J. J. ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. I. Theory,” Appl. Opt. 22, 2456–2462 (1983).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

M. Testorf, U. L. Osterberg, B. W. Pogue, K. D. Paulsen, “Sampling of time and frequency domain signals in Monte Carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue,” Appl. Opt. 36, 9042–9049 (1997).
[CrossRef]

Comp. Meth. Biomech. Biomed. Eng.

R. Saxena, T. S. Keller, J. M. Sullivan, “A three-dimensional finite element scheme to investigate apparent mechanical properties of trabecular bone,” Comp. Meth. Biomech. Biomed. Eng. 2, 285–294 (1999).
[CrossRef]

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng.

K. D. Paulsen, X. Jia, J. M. Sullivan, “Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis,” IEEE Trans. Biomed. Eng. 40, 933–945 (1993).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[CrossRef] [PubMed]

Inverse Problems

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

B. W. Pogue, K. D. Paulsen, H. Kaufman, C. Abele, “Calibration of near infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 182–193 (2000).

J. Opt. Soc. Am. A

Lasers Med. Sci.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990).
[CrossRef]

Med. Phys.

K. D. Paulsen, H. B. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, L. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

Opt. Exp.

B. W. Pogue, T. McBride, U. Osterberg, K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999).
[CrossRef]

Opt. Express.

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1997).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B.

D. T. Delpy, M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London Ser. B. 352, 649–659 (1997).
[CrossRef]

Phys. Med. Biol.

A. H. Hielscher, L. Wang, K. Tittel, S. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, “Frequency domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

Phys. Rev. A

I. Freund, “Surface reflections and boundary-conditions for diffusive photon transport,” Phys. Rev. A 45, 8854–8858 (1992).
[CrossRef] [PubMed]

Phys. Rev. A.

J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal-reflection of diffusive light in random-media,” Phys. Rev. A. 44, 3948–3959 (1991).
[CrossRef] [PubMed]

Phys. Rev. E

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).
[CrossRef]

Phys. Rev. E.

J. B. Fishkin, S. Fantini, M. J. VandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E. 53, 2307–2319 (1996).
[CrossRef]

Radiology

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared light: initial pilot results in the breast,” Radiology 218, 261–266 (2001).

Other

B. C. Wilson, M. S. Patterson, S. T. Flock, J. D. Moulton, “The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range,” in Light in Biology and Medicine, M. D. Dall’Acqua, ed. (Plenum, New York, 1988), pp. 45–52.
[CrossRef]

G. J. Mueller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton, M. Kaschke, “Intensity modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium Digest (IEEE, New York, 1991), pp. 905–908.

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976), pp. 133–138.

J. D. Moulton, “Diffusion theory modeling of picosecond laser pulse propagation in turbid media” (Physics Department, McMaster University, Hamilton, Canada, 1990).

L. L. Lapidus, G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley, New York, 1999).
[CrossRef]

B. W. Pogue, “Frequency-domain optical spectroscopy and imaging of tissue and tissue-simulating media” (Physics Department, McMaster University, Hamilton, Canada, 1996).

T. O. McBride, S. Jiang, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. (to be published).

T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXII, J. Dunn, H. Swartz, eds. (Pabst, Lengerich, Germany, 2001).

B. W. Pogue, T. Momma, H. Wu, T. Hasan are preparing a manuscript to be called “Investigation of transient absorption in vivo during photodynamic therapy with pulsed laser light.”

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (Springer, New York, 1997), pp. 71–84.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Cylindrical finite-element mesh used for the simulations in this study. (b) Breast mesh generated directly from a volumetric magnetic resonance exam of a patient. In the breast mesh, attachment to the chest wall is at left and the breast nipple region is right. A single planar ring of nodes is shown as a dark line around the breast midline to indicate the relevant imaging plane.

Fig. 2
Fig. 2

(a) Cylindrical geometry used for both simulations and tissue-simulating phantom measurements, which is equivalent to that used for breast tomography. (b) Geometry used to measure the fluence gradient at the upper surface of the cylinder. These two experimental geometries were used to generate the data in Figs. 35.

Fig. 3
Fig. 3

Measurements of ac intensity (top) and phase shift (bottom) at 100 MHz versus depth as measured by a 1-mm fiber inserted into gelatin-based tissue-simulating phantoms in the configuration shown in Fig. 2(a) with the source and detector fibers separated along the circumference by 90°. Negative depth indicates that the fiber was removed from the phantom. Phantoms measured were composed of TiO2 powder and India ink, in proportions that varied their optical properties: (i) μ a = 0.0039 mm-1 and μ s ′ = 0.35 mm-1, circles; (ii) μ a = 0.0032 mm-1 and μ s ′ = 0.56 mm-1, squares; and (iii) μ a = 0.0048 mm-1 and μ s ′ = 0.73 mm-1, triangles.

Fig. 4
Fig. 4

Measurements of ac amplitude (top) and phase shift (bottom) as a function of depth of the measurement fiber into the tissue-simulating phantom for six different angular positions around the circumference. Measurement geometry was the same as in Fig. 2(a). In this case, 0° is with the source and detector fibers together, and 180° is with them on opposite sides of the phantom. The phantom was the same as (i) in Fig. 3 with μ a = 0.0039 mm-1 and μ s ′ = 0.35 mm-1.

Fig. 5
Fig. 5

Measurements of ac amplitude (top) and phase shift (bottom) as a function of the depth, using the same phantom as in Fig. 4, but taken along the flat upper surface, as depicted in Fig. 2(b).

Fig. 6
Fig. 6

Plots of the natural logarithm of ac amplitude (top) and phase shift (bottom) vs. angle between source and detector locations around the periphery of a cylindrical phantom. Data points (solid circles) are measurements from a phantom with an 82-mm diameter and optical properties μ a = 0.0028 mm-1 and μ s ′ = 0.50 mm-1. Solid curves are calculations from the 3-D finite-element mesh shown in Fig. 1(a), having the same optical property values, but with varying boundary coefficient α [Eq. (13)] as indicated.

Fig. 7
Fig. 7

Plots of the natural logarithm of ac amplitude (top) and phase shift (bottom) measured and calculated in the same geometry as Fig. 6 for 2-D and 3-D finite-element and Monte Carlo simulations.

Fig. 8
Fig. 8

Calculated natural logarithm of normalized ac amplitude (top) and phase shift (bottom) as a function of chord distance between source and detector, using the two 3-D finite-element meshes shown in Fig. 1. The optical properties used for these simulations were μ a = 0.01 mm-1 and μ s ′ = 0.5 mm-1 for a cylindrical diameter of 84 mm and breast mesh diameters between 50 and 90 mm along the two orthogonal dimensions parallel to the chest wall.

Fig. 9
Fig. 9

Reconstructed images of a simulated object in the upper portion of a cylindrical region. Embedded objects were long cylinders (top row) and spheres (bottom row) with diameters of (i) 6 mm (left column), (ii) 12 mm (middle column), and (iii) 24 mm (right column). Total background dimension was 75 mm, with optical properties of μ a = 0.005 mm-1 and μ s ′ = 0.5 mm-1 and μ a = 0.01 mm-1 and μ s ′ = 0.5 mm-1 within the cylindrical and spherical localized regions.

Fig. 10
Fig. 10

Ratio of reconstructed peak absorption coefficient (top) and FWHM (bottom) for spherical relative to cylindrical objects as a function of the inclusion size when positioned at the center and edge of the imaging field.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

1cLr, t, sˆt+·sˆLr, t, sˆ=-μa+μsLr, t, sˆ+μs4π Lr, t, sˆfsˆ·sˆdΩ+Sr, t, sˆ,
Φr, t=4π Lr, t, sˆdΩ,
Jr, t=4π Lr, t, sˆsˆdΩ.
Lr, t, sˆ=14π Φr, t+34πJr, t·sˆ.
1cΦr, t, sˆt+·Jr, t, sˆ=-μaΦr, t, sˆ+Sr, t,
1cJr, tt=-13 Φr, t-13DJr, t.
Jr, t=-DΦr, t,
1cΦr, tt-·DΦr, t=-μaΦr, t+Sr, t.
-·DΦr, ω+μa+iω/cΦr, ω=Sr, ω,
Φr, ω=2An·DΦr, ω.
A=1+rd/1-rd,
-·DΦϕi+μa+iωcΦϕi=Sϕi.
DΦ·ϕi-n·DΦϕids+μa+iωcΦϕi=Sϕi.
n·DΦ=αΦ,
α=n·DΦΦ=DΦΦrr=R,

Metrics