Abstract

We show that the artificial resonances of dielectric optical cavities can be used to enhance the detection sensitivity of evanescent-wave optical fluorescence biosensors to the binding of a labeled analyte with a biospecific monolayer. Resonant coupling of power into the optical cavity allows for efficient use of the long photon lifetimes (or equivalently, the high internal power) of the high-Q whispering gallery modes to increase the probability of photon absorption into the fluorophore, thereby enhancing fluorescence emission. A method to compare the intrinsic sensitivity between resonant cavity and waveguide formats is also developed. Using realistic estimates for dielectric cylindrical cavities in both bulk and integrated configurations, we can expect sensitivity enhancement by at least an order of magnitude over standard waveguide evanescent sensors of equivalent sensing geometries. In addition, the required sample volume can be reduced significantly. The cylindrical cavity format is compatible with a large variety of sensing modalities such as immunoassay and molecular diagnostic assay.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ngeh-Ngwainbi, A. A. Suleiman, G. G. Guilbault, “Piezoelectric crystal biosensors,” Biosens. Bioelectron. 5, 13–26 (1990).
    [CrossRef] [PubMed]
  2. B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, 1–9 (1995).
  3. S. Y. Rabbany, B. L. Donner, F. S. Ligler, “Optical immunosensors,” Crit. Rev. Biomed. Eng. 22, 307–346 (1994).
    [PubMed]
  4. A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
    [CrossRef] [PubMed]
  5. I. E. Squillante, “Applications of fiber-optic evanescent wave spectroscopy,” Drug Dev. Ind. Pharm. 24, 1163–1175 (1998).
    [CrossRef]
  6. A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sens. Actuators B 1, 589–591 (1990).
    [CrossRef]
  7. Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991).
    [CrossRef] [PubMed]
  8. T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
    [CrossRef] [PubMed]
  9. D. S. Walker, W. M. Reichert, C. J. Berry, “Corning 7059, silicon oxynitride, and silicon dioxide thin film integrated optical waveguide: in search of low loss, nonfluorescent, reusable glass waveguides,” Appl. Spectrosc. 46, 1437–1441 (1992).
    [CrossRef]
  10. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
    [CrossRef]
  11. B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  12. N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  13. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
    [CrossRef] [PubMed]
  14. E. Roederer, G. J. Bastiaans, “Microgravimetric immunoassay with piezoelectric crystals,” Anal. Chem. 55, 2333–2336 (1983).
    [CrossRef]
  15. J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
    [CrossRef]
  16. C. G. B. Garrett, W. Kaiser, W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
    [CrossRef]
  17. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  18. A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
    [CrossRef] [PubMed]
  19. H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
    [CrossRef] [PubMed]
  20. L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
    [CrossRef]
  21. W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991).
    [CrossRef]
  22. M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993).
    [CrossRef]
  23. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  24. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [CrossRef]
  25. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
    [CrossRef]
  26. R. W. Shaw, W. B. Whitten, M. D. Barnes, J. Ramsey, “Spherical cavity ring-down spectroscopy experiments,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000).
  27. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
    [CrossRef]
  28. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, UK, 1997).
  29. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef] [PubMed]
  30. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992).
    [CrossRef] [PubMed]
  31. R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  32. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  33. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995–2003 (1987).
    [CrossRef]
  34. H. Yokoyama, S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
    [CrossRef]
  35. M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994).
    [CrossRef]
  36. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
    [CrossRef] [PubMed]
  37. S. Arnold, L. M. Folan, “Fluorescence spectrometer for a single electrodynamically levitated microparticle,” Rev. Sci. Instrum. 57, 2250–2253 (1986).
    [CrossRef]
  38. D. R. Rowland, J. D. Love, “Evanescent wave coupling of whispering gallery modes in a dielectric disk or a curved rectangular dielectric waveguide,” IEE Proc. J. 11, 400–404 (1993).
  39. A. Serpengüzel, S. Arnold, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654–656 (1995).
    [CrossRef] [PubMed]
  40. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995).
    [CrossRef] [PubMed]
  41. S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387.
    [CrossRef]
  42. D. L. Lee, Electromagnetic Principals of Integrated Optics (Wiley, New York, 1986).
  43. B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
    [CrossRef] [PubMed]
  44. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
    [CrossRef]
  45. M. K. Chin, D. Y. Chu, S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
    [CrossRef]
  46. N. C. Frateschi, A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66, 2932–2934 (1995).
    [CrossRef]
  47. Y. Tomabechi, J. Hwang, K. Matsumura, “Resonance characteristics on a dielectric disk resonator coupled with a straight waveguide,” Radio Sci. 31, 1809–1814 (1996).
    [CrossRef]
  48. S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
    [CrossRef]
  49. B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  50. S.-W. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993).
    [CrossRef] [PubMed]
  51. G. R. Quigley, R. D. Harris, J. S. Wilkenson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036–6039 (1999).
    [CrossRef]
  52. P. Chylek, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
    [CrossRef] [PubMed]
  53. J. C. Knight, H. S. T. Driver, G. N. Robertson, “Morphology-dependent resonances in a cylindrical dye microlaser: mode assignments, cavity Q values, and critical dye concentrations,” J. Opt. Soc. Am. B 11, 2046–2053 (1994).
    [CrossRef]
  54. J. Yu, K. Giulietti, F. Sourgen, A. R. J. P. Wolf, M. Ferriol, G. Foulon, C. G. M. T. Cohen-Adad, G. Boulon, “Second-harmonic generation in a microradius LiNbO3 cylinder with a quasi-elliptical cross section,” Opt. Lett. 24, 394–396 (1999).
    [CrossRef]
  55. R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
    [CrossRef]
  56. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  57. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
    [CrossRef] [PubMed]
  58. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
    [CrossRef]
  59. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
    [CrossRef] [PubMed]
  60. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [CrossRef]
  61. F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
    [CrossRef]
  62. B. J. Li, P. L. Liu, “Numerical analysis of whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron. 32, 1583–1587 (1996).
    [CrossRef]
  63. A. Himeno, K. Kuniharu, T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
    [CrossRef]
  64. R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
    [CrossRef]

1999

1998

A. Himeno, K. Kuniharu, T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[CrossRef]

R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

I. E. Squillante, “Applications of fiber-optic evanescent wave spectroscopy,” Drug Dev. Ind. Pharm. 24, 1163–1175 (1998).
[CrossRef]

1997

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[CrossRef]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

1996

M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef] [PubMed]

B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef] [PubMed]

Y. Tomabechi, J. Hwang, K. Matsumura, “Resonance characteristics on a dielectric disk resonator coupled with a straight waveguide,” Radio Sci. 31, 1809–1814 (1996).
[CrossRef]

B. J. Li, P. L. Liu, “Numerical analysis of whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron. 32, 1583–1587 (1996).
[CrossRef]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
[CrossRef] [PubMed]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

1995

N. C. Frateschi, A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66, 2932–2934 (1995).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, 1–9 (1995).

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

A. Serpengüzel, S. Arnold, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654–656 (1995).
[CrossRef] [PubMed]

N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995).
[CrossRef] [PubMed]

1994

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994).
[CrossRef]

J. C. Knight, H. S. T. Driver, G. N. Robertson, “Morphology-dependent resonances in a cylindrical dye microlaser: mode assignments, cavity Q values, and critical dye concentrations,” J. Opt. Soc. Am. B 11, 2046–2053 (1994).
[CrossRef]

S. Y. Rabbany, B. L. Donner, F. S. Ligler, “Optical immunosensors,” Crit. Rev. Biomed. Eng. 22, 307–346 (1994).
[PubMed]

M. K. Chin, D. Y. Chu, S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

1993

D. R. Rowland, J. D. Love, “Evanescent wave coupling of whispering gallery modes in a dielectric disk or a curved rectangular dielectric waveguide,” IEE Proc. J. 11, 400–404 (1993).

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993).
[CrossRef]

S.-W. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993).
[CrossRef] [PubMed]

1992

J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992).
[CrossRef] [PubMed]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

D. S. Walker, W. M. Reichert, C. J. Berry, “Corning 7059, silicon oxynitride, and silicon dioxide thin film integrated optical waveguide: in search of low loss, nonfluorescent, reusable glass waveguides,” Appl. Spectrosc. 46, 1437–1441 (1992).
[CrossRef]

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

1991

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991).
[CrossRef] [PubMed]

W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991).
[CrossRef]

P. Chylek, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
[CrossRef] [PubMed]

1990

A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sens. Actuators B 1, 589–591 (1990).
[CrossRef]

J. Ngeh-Ngwainbi, A. A. Suleiman, G. G. Guilbault, “Piezoelectric crystal biosensors,” Biosens. Bioelectron. 5, 13–26 (1990).
[CrossRef] [PubMed]

1989

H. Yokoyama, S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[CrossRef]

1988

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

1987

1986

S. Arnold, L. M. Folan, “Fluorescence spectrometer for a single electrodynamically levitated microparticle,” Rev. Sci. Instrum. 57, 2250–2253 (1986).
[CrossRef]

1983

E. Roederer, G. J. Bastiaans, “Microgravimetric immunoassay with piezoelectric crystals,” Anal. Chem. 55, 2333–2336 (1983).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1981

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

1980

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

1969

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[CrossRef]

1961

C. G. B. Garrett, W. Kaiser, W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

1910

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
[CrossRef]

Abel, A. P.

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
[CrossRef] [PubMed]

Albers, H.

R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[CrossRef]

Arnold, S.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

A. Serpengüzel, S. Arnold, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654–656 (1995).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994).
[CrossRef]

W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991).
[CrossRef]

S. Arnold, L. M. Folan, “Fluorescence spectrometer for a single electrodynamically levitated microparticle,” Rev. Sci. Instrum. 57, 2250–2253 (1986).
[CrossRef]

Attridge, J. W.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Baba, T.

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[CrossRef]

Barber, P. W.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Barnes, M. D.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994).
[CrossRef]

M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993).
[CrossRef]

R. W. Shaw, W. B. Whitten, M. D. Barnes, J. Ramsey, “Spherical cavity ring-down spectroscopy experiments,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000).

Bastiaans, G. J.

E. Roederer, G. J. Bastiaans, “Microgravimetric immunoassay with piezoelectric crystals,” Anal. Chem. 55, 2333–2336 (1983).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Berry, C. J.

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Blom, F. C.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[CrossRef]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Boulon, G.

Bronk, B. V.

W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991).
[CrossRef]

Brorson, S. D.

H. Yokoyama, S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[CrossRef]

Brune, M.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Campillo, A. J.

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

P. Chylek, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
[CrossRef] [PubMed]

R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Chang, R. K.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Chin, M. K.

M. K. Chin, D. Y. Chu, S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Chin, M.-K.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387.
[CrossRef]

Ching, S. C.

Christensen, D. A.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

Chu, D. Y.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

M. K. Chin, D. Y. Chu, S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387.
[CrossRef]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef] [PubMed]

Chylek, P.

Cohen-Adad, C. G. M. T.

Collot, L.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Daniels, P. B.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Davidson, G. P.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

de Ridder, R. M.

R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Deacon, J. K.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sens. Actuators B 1, 589–591 (1990).
[CrossRef]

Donner, B. L.

S. Y. Rabbany, B. L. Donner, F. S. Ligler, “Optical immunosensors,” Crit. Rev. Biomed. Eng. 22, 307–346 (1994).
[PubMed]

Dorain, P. B.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

Driessen, A.

R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[CrossRef]

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[CrossRef]

Driver, H. S. T.

Dubreuil, N.

Duveneck, G. L.

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
[CrossRef] [PubMed]

Ehrat, M.

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
[CrossRef] [PubMed]

Eversole, J. D.

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

P. Chylek, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
[CrossRef] [PubMed]

Ferriol, M.

Flanagan, M. T.

A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sens. Actuators B 1, 589–591 (1990).
[CrossRef]

Folan, L. M.

S. Arnold, L. M. Folan, “Fluorescence spectrometer for a single electrodynamically levitated microparticle,” Rev. Sci. Instrum. 57, 2250–2253 (1986).
[CrossRef]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Foulon, G.

Frateschi, N. C.

N. C. Frateschi, A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66, 2932–2934 (1995).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Giulietti, K.

Gorodetsky, M. L.

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Guilbault, G. G.

J. Ngeh-Ngwainbi, A. A. Suleiman, G. G. Guilbault, “Piezoelectric crystal biosensors,” Biosens. Bioelectron. 5, 13–26 (1990).
[CrossRef] [PubMed]

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

Harb, C. C.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Hare, J.

Haroche, S.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Harris, J. S.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Harris, R. D.

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Herron, J. N.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

Himeno, A.

A. Himeno, K. Kuniharu, T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[CrossRef]

Ho, S. T.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Ho, S.-T.

M. K. Chin, D. Y. Chu, S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387.
[CrossRef]

Hoekstra, H. J. W. M.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[CrossRef]

Holler, S.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

Hudgens, J. W.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Huie, R. E.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Hutcheon, R. J.

Hwang, J.

Y. Tomabechi, J. Hwang, K. Matsumura, “Resonance characteristics on a dielectric disk resonator coupled with a straight waveguide,” Radio Sci. 31, 1809–1814 (1996).
[CrossRef]

Ilchenko, V. S.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Kang, S.-W.

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Knight, J. C.

Koch, S. W.

N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Kung, C.-Y.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

Kuniharu, K.

A. Himeno, K. Kuniharu, T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[CrossRef]

Lai, H. M.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Lambeck, P. V.

R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[CrossRef]

Laybourn, P. J.

Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991).
[CrossRef] [PubMed]

Lee, D. L.

D. L. Lee, Electromagnetic Principals of Integrated Optics (Wiley, New York, 1986).

Lefevre, V.

Lefevre-Seguin, V.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Leventhal, D. K.

Levi, A. F. J.

N. C. Frateschi, A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66, 2932–2934 (1995).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Li, B. J.

B. J. Li, P. L. Liu, “Numerical analysis of whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron. 32, 1583–1587 (1996).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, 1–9 (1995).

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Ligler, F. S.

S. Y. Rabbany, B. L. Donner, F. S. Ligler, “Optical immunosensors,” Crit. Rev. Biomed. Eng. 22, 307–346 (1994).
[PubMed]

Lin, H.-B.

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

P. Chylek, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef] [PubMed]

Liu, P. L.

B. J. Li, P. L. Liu, “Numerical analysis of whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron. 32, 1583–1587 (1996).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Love, J. D.

D. R. Rowland, J. D. Love, “Evanescent wave coupling of whispering gallery modes in a dielectric disk or a curved rectangular dielectric waveguide,” IEE Proc. J. 11, 400–404 (1993).

Lundstrom, I.

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, 1–9 (1995).

Lundström, I.

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Magill, J. V.

Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[CrossRef]

Matsumura, K.

Y. Tomabechi, J. Hwang, K. Matsumura, “Resonance characteristics on a dielectric disk resonator coupled with a straight waveguide,” Radio Sci. 31, 1809–1814 (1996).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Merritt, C. D.

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Minamitani, H.

Miya, T.

A. Himeno, K. Kuniharu, T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[CrossRef]

Mysyrowicz, A.

N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Ng, K. C.

M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993).
[CrossRef]

Ngeh-Ngwainbi, J.

J. Ngeh-Ngwainbi, A. A. Suleiman, G. G. Guilbault, “Piezoelectric crystal biosensors,” Biosens. Bioelectron. 5, 13–26 (1990).
[CrossRef] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, 1–9 (1995).

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Owen, J. F.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Paldus, B. A.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Peters, C. R.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

Peyghambarian, N.

N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

Pipino, A. C. R.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Plowman, T. E.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

Popma, T. J. A.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quigley, G. R.

Rabbany, S. Y.

S. Y. Rabbany, B. L. Donner, F. S. Ligler, “Optical immunosensors,” Crit. Rev. Biomed. Eng. 22, 307–346 (1994).
[PubMed]

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

Raimond, J. M.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Ramaswamy, R. V.

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

Ramsey, J.

R. W. Shaw, W. B. Whitten, M. D. Barnes, J. Ramsey, “Spherical cavity ring-down spectroscopy experiments,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000).

Ramsey, J. M.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994).
[CrossRef]

M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993).
[CrossRef]

W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991).
[CrossRef]

Rayleigh, L.

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
[CrossRef]

Reichert, W. M.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

D. S. Walker, W. M. Reichert, C. J. Berry, “Corning 7059, silicon oxynitride, and silicon dioxide thin film integrated optical waveguide: in search of low loss, nonfluorescent, reusable glass waveguides,” Appl. Spectrosc. 46, 1437–1441 (1992).
[CrossRef]

Robertson, G. N.

Robinson, G.

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
[CrossRef]

Robinson, G. A.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Roederer, E.

E. Roederer, G. J. Bastiaans, “Microgravimetric immunoassay with piezoelectric crystals,” Anal. Chem. 55, 2333–2336 (1983).
[CrossRef]

Rowland, D. R.

D. R. Rowland, J. D. Love, “Evanescent wave coupling of whispering gallery modes in a dielectric disk or a curved rectangular dielectric waveguide,” IEE Proc. J. 11, 400–404 (1993).

Rue, R. M. D. L.

Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991).
[CrossRef] [PubMed]

Sandoghdar, V.

Sasaki, K.

Savchenkov, A. A.

Serpengüzel, A.

Shaw, R. W.

R. W. Shaw, W. B. Whitten, M. D. Barnes, J. Ramsey, “Spherical cavity ring-down spectroscopy experiments,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000).

Sloper, A. N.

A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sens. Actuators B 1, 589–591 (1990).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Sourgen, F.

Spence, T. G.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Squillante, I. E.

I. E. Squillante, “Applications of fiber-optic evanescent wave spectroscopy,” Drug Dev. Ind. Pharm. 24, 1163–1175 (1998).
[CrossRef]

Srivastava, R.

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

Stair, K. A.

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Suleiman, A. A.

J. Ngeh-Ngwainbi, A. A. Suleiman, G. G. Guilbault, “Piezoelectric crystal biosensors,” Biosens. Bioelectron. 5, 13–26 (1990).
[CrossRef] [PubMed]

Taflove, A.

Tavlove, A.

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Tiberio, R. C.

Tomabechi, Y.

Y. Tomabechi, J. Hwang, K. Matsumura, “Resonance characteristics on a dielectric disk resonator coupled with a straight waveguide,” Radio Sci. 31, 1809–1814 (1996).
[CrossRef]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

van Dijk, D. R.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[CrossRef]

Walker, D. S.

Wang, H. K.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

Weller, M. G.

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
[CrossRef] [PubMed]

Whitten, W. B.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994).
[CrossRef]

M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993).
[CrossRef]

W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991).
[CrossRef]

R. W. Shaw, W. B. Whitten, M. D. Barnes, J. Ramsey, “Spherical cavity ring-down spectroscopy experiments,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000).

Widmer, H. M.

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
[CrossRef] [PubMed]

Wilke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Wilkenson, J. S.

Wolf, A. R. J. P.

Wörhoff, K.

R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[CrossRef]

Wu, S.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387.
[CrossRef]

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, UK, 1997).

Yokoyama, H.

H. Yokoyama, S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[CrossRef]

Young, K.

Yu, J.

Zare, R. N.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Zhang, J. P.

Zhang, J.-P.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387.
[CrossRef]

Zhou, Y.

Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991).
[CrossRef] [PubMed]

Anal. Chem.

E. Roederer, G. J. Bastiaans, “Microgravimetric immunoassay with piezoelectric crystals,” Anal. Chem. 55, 2333–2336 (1983).
[CrossRef]

W. B. Whitten, J. M. Ramsey, S. Arnold, B. V. Bronk, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991).
[CrossRef]

M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993).
[CrossRef]

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem. 68, 2905–2912 (1996).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, T. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: towards an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[CrossRef]

N. C. Frateschi, A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66, 2932–2934 (1995).
[CrossRef]

Appl. Spectrosc.

Bell Syst. Tech. J.

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
[CrossRef]

Biosens. Bioelectron.

Y. Zhou, P. J. Laybourn, J. V. Magill, R. M. D. L. Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosens. Bioelectron. 6, 595–607 (1991).
[CrossRef] [PubMed]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11, 149–160 (1996).
[CrossRef] [PubMed]

J. Ngeh-Ngwainbi, A. A. Suleiman, G. G. Guilbault, “Piezoelectric crystal biosensors,” Biosens. Bioelectron. 5, 13–26 (1990).
[CrossRef] [PubMed]

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, 1–9 (1995).

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Crit. Rev. Biomed. Eng.

S. Y. Rabbany, B. L. Donner, F. S. Ligler, “Optical immunosensors,” Crit. Rev. Biomed. Eng. 22, 307–346 (1994).
[PubMed]

Drug Dev. Ind. Pharm.

I. E. Squillante, “Applications of fiber-optic evanescent wave spectroscopy,” Drug Dev. Ind. Pharm. 24, 1163–1175 (1998).
[CrossRef]

Europhys. Lett.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

IEE Proc. J.

D. R. Rowland, J. D. Love, “Evanescent wave coupling of whispering gallery modes in a dielectric disk or a curved rectangular dielectric waveguide,” IEE Proc. J. 11, 400–404 (1993).

IEEE J. Quantum Electron.

B. J. Li, P. L. Liu, “Numerical analysis of whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron. 32, 1583–1587 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Himeno, K. Kuniharu, T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[CrossRef]

R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communications,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[CrossRef]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

J. Appl. Phys.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

H. Yokoyama, S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801–4805 (1989).
[CrossRef]

M. K. Chin, D. Y. Chu, S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

J. Lightwave Technol.

S. C. Hagness, D. Rafizadeh, S. T. Ho, A. Tavlove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

J. C. Knight, H. S. T. Driver, R. J. Hutcheon, G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992).
[CrossRef] [PubMed]

A. Serpengüzel, S. Arnold, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654–656 (1995).
[CrossRef] [PubMed]

N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995).
[CrossRef] [PubMed]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
[CrossRef] [PubMed]

J. Yu, K. Giulietti, F. Sourgen, A. R. J. P. Wolf, M. Ferriol, G. Foulon, C. G. M. T. Cohen-Adad, G. Boulon, “Second-harmonic generation in a microradius LiNbO3 cylinder with a quasi-elliptical cross section,” Opt. Lett. 24, 394–396 (1999).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef] [PubMed]

B. E. Little, S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef] [PubMed]

P. Chylek, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
[CrossRef] [PubMed]

Philos. Mag.

L. Rayleigh, “The problem of the whispering gallery,” Philos. Mag. 20, 1001–1004 (1910).
[CrossRef]

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

C. G. B. Garrett, W. Kaiser, W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Phys. Rev. A

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[CrossRef]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[CrossRef] [PubMed]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

Radio Sci.

Y. Tomabechi, J. Hwang, K. Matsumura, “Resonance characteristics on a dielectric disk resonator coupled with a straight waveguide,” Radio Sci. 31, 1809–1814 (1996).
[CrossRef]

Rev. Sci. Instrum.

S. Arnold, L. M. Folan, “Fluorescence spectrometer for a single electrodynamically levitated microparticle,” Rev. Sci. Instrum. 57, 2250–2253 (1986).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Sens. Actuators

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Sens. Actuators B

A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sens. Actuators B 1, 589–591 (1990).
[CrossRef]

Other

R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, M.-K. Chin, “Dielectric photonic wells and wires and spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 339–387.
[CrossRef]

D. L. Lee, Electromagnetic Principals of Integrated Optics (Wiley, New York, 1986).

N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice-Hall, Englewood Cliffs, N.J., 1993).

R. W. Shaw, W. B. Whitten, M. D. Barnes, J. Ramsey, “Spherical cavity ring-down spectroscopy experiments,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000).

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, Oxford, UK, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cylindrical microcavity fluorescence biosensor. The evanescent field of each cavity mode interacts with the monolayer and provides a mechanism for optical excitation of a fluorophore. Light is resonantly coupled into the cavity through the adjacent strip waveguide. A reflection port allows the extraction of light from within the cavity. The biological capture layer resides on an annular region with inner and outer radii R 1 and R, respectively.

Fig. 2
Fig. 2

Generic refractive-index distribution for a cylindrical cavity. The substrate, waveguide, and cladding indices for rR may differ from those for r > R as shown.

Fig. 3
Fig. 3

Two-dimensional WGM’s for a cylindrical cavity. For these pictures, a small cavity radius (R = 2.5 µm) is used to visually resolve the cavity modes. The left image shows the p = 0, ℓ = 0, m = 34 mode of the cavity; the center image shows the p = 0, ℓ = 1, m = 29 mode; and the right image shows the p = 0, ℓ = 2, m = 26 mode. The effective indices inside and outside the cavity are n eff0 = 1.6253 and n eff1 = 1.0. The mode wavelengths are λ f = 643.4, 651.9, and 643.6 nm, respectively.

Fig. 4
Fig. 4

Planar waveguide fluorescence biosensor. The width of the capture layer W and waveguide length L define the active sensing region of the device. Fluorescence is induced by the evanescent field of the guided mode. Fluorescence evanescently coupled back into a waveguide mode or fluorescence emitted from the top surface can be collected to determine bound analyte concentration.

Fig. 5
Fig. 5

Bulk cylindrical cavity geometry. A diffused waveguide at the end of the glass rod defines a thin-disk cavity of thickness d. Fluorescence excitation occurs through evanescent field penetration into the biolayer, whereas fluorescence collection occurs in a direction perpendicular to the WGM.

Fig. 6
Fig. 6

Plot of ΔR/ R for the bulk cylindrical cavity as a function of radius. The value of ΔR is taken from the innermost 1/e intensity point to R. The cavity refractive index is n core0 = 1.52 with the diffused waveguide thickness d = 2.0 µm, and the substrate index is n subs0 = 1.51. The effective index of the cavity is n eff0 = 1.5153, and the effective index outside the cavity is n eff1 = 1.0.

Fig. 7
Fig. 7

Sensitivity enhancement factor (data points are marked with an asterisk) and analyte reduction factor (data points are marked with an open triangle) for the bulk cylindrical cavity with Q = 3 × 106 compared with a square planar waveguide of equal device area. Sensitivity enhancement by at least an order of magnitude is expected over the entire range of cavity radii.

Fig. 8
Fig. 8

Cylindrical microcavity geometry with SiON waveguide technology. The SiON regions outside the cavity may not be etched down necessarily to the SiO2 lower cladding, such that the thickness of the waveguide at the cavity is d and the thickness outside the cavity is t. For complete etching, t = 0. Fluorescence excitation occurs through evanescent field penetration into the biolayer, whereas fluorescence collection occurs in a direction perpendicular to the WGM.

Fig. 9
Fig. 9

Plot of ΔR/ R for the cylindrical microcavity as a function of radius. The value of ΔR is taken from the innermost 1/e intensity point to R. The SiON microcavity refractive index is n core0 = 1.7 with a waveguide thickness of d = 0.45 µm (and t = 0), and the SiO2 substrate index is n subs0 = 1.46. The effective index of the cavity is n eff0 = 1.6249 and the effective index outside the cavity is n eff1 = 1.0. The ℓ = 1 WGM is assumed.

Fig. 10
Fig. 10

Sensitivity enhancement factor (data points are marked with an asterisk) and analyte reduction factor (data points are marked with an open triangle) for the cylindrical microcavity with Q = 1 × 104 compared with a square planar waveguide of equal device area. Sensitivity enhancement by approximately an order of magnitude is expected over the entire range of cavity radii. The ℓ = 1 WGM is assumed.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

2ψr2+1rψr+1r22ψϕ2+2ψx2+k2ψ=0,
d2Fdr2+1rdFdr+q2-mr2 F=0,
kxd-tan-1γxskx-tan-1γxckx=pπ.
kx2=kf2ncore02-keff02  0xd,
γxc2=keff02-kf2nclad02  x>d,
γxs2=keff02-kf2nsubs02  x<0.
Fr=AJmkeff0rrRB exp-αr-Rr>R.
keff0Jm+1keff0R=α keff02keff12+βJmkeff0R,
Pmode=vgτ2πRτe Pinc,  Ptrans=1-2ττe2Pinc,
Pmode=λQ4π2R Pinc,
ρ=λQ4π2R
S=2σK,
ηwg=0L αwgf exp-αwgbulk+αwgfzdz=αwgfαwgbulk+αwgf1-exp-αwgbulk+αwgfL,
αwgf=dd+-W/2W/2 αCwgIx, ydydx-- Ix, ydydx.
Ix, y=XxYy.
Γx=dd+ Xxdx- Xxdx,
Γy=-W/2W/2 Yydy- Yydy,
αwgf=σabsCwgΓxΓy.
ηwgσabsCwgΓxΓyαwgbulk1-exp-αwgbulkLσabsCwgΓxΓyL.
Prec  ηwgPinc
K  dPrecdCwg=aσabsΓxΓyPincL.
σ  Pinc.
Swg  1σabsΓxΓyPinc L.
Nwg=CwgAwg,
ηcav=QQf=11+Qf/Q, QQf=λαcavfQ2π
αcavf=dd+02πR1RαCcavIm,x, r, ϕrdrdϕdx-02π0Im,x, r, ϕrdrdϕdx.
Im,x, r, ϕ=XxrΦϕ,
Γx=dd+ Xxdx- Xxdx,
Γa=02πR1R rΦϕrdrdϕ02π0 rΦϕrdrdϕ,
αcavf=σabsCcavΓxΓa.
Prec  ηcavPinc=σabsCcavΓxΓaQk Pinc,
K  dPrecdCcav=aσabsΓxΓaQk Pinc.
σ  ρPinc1/2=Q2πkR Pinc1/2,
Scav  1σabsΓxΓaQλRPinc1/2.
Ncav=Ccav02πR1R rdrdϕ=πCcavR2-R12.
Ncav=CcavAcav,
SwgScav=QλR1/2LΓaΓy.
L=QλR1/2ΓaΓy=LequivLcav1/2ΓaΓy,
NwgNcav=AwgAcavWΔRLequivLcav1/2=WΔRρ.
L=2πReffΔRWLcavΔRW.
SwgScav=WΔRρ.
SwgScav=2WRρ.

Metrics