Abstract

Time-resolved reflectance spectroscopy can be used to assess nondestructively the bulk (rather than the superficial) optical properties of highly diffusive media. A fully automated system for time-resolved reflectance spectroscopy was used to evaluate the absorption and the transport scattering spectra of fruits in the red and the near-infrared regions. In particular, data were collected in the range 650–1000 nm from three varieties of apples and from peaches, kiwifruits, and tomatoes. The absorption spectra were usually dominated by the water peak near 970 nm, whereas chlorophyll was detected at 675 nm. For all species the scattering decreased progressively with increasing wavelength. A best fit to water and chlorophyll absorption line shapes and to Mie theory permitted the estimation of water and chlorophyll content and the average size of scattering centers in the bulk of intact fruits.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chen, “Quality evaluation technology for agricultural products,” in Proceedings of the International Conference on Agricultural Machinery Engineering (Korean Society for Agriculture and Machinery, Seoul, 1996), pp. 171–204.
  2. J. A. Abbott, “Quality measurement of fruits and vegetables,” Post-harvest Biol. Technol. 15, 207–225 (1999).
    [CrossRef]
  3. S. Gunasekaran, M. R. Paulsen, G. C. Shove, “Optical methods for non-destructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
    [CrossRef]
  4. J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).
  5. V. A. McGlone, H. Abe, S. Kawano, “Kiwifruit firmness by near infrared light scattering,” J. Near Infrared Spectrosc. 5, 83–89 (1997).
    [CrossRef]
  6. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  7. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
    [CrossRef] [PubMed]
  8. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [CrossRef]
  9. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today (March, 1995), pp. 34–40.
  10. S. Feng, F. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).
    [CrossRef] [PubMed]
  11. R. C. Haskell, L. O. Svasaand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  12. K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
    [CrossRef]
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).
  14. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
    [CrossRef]
  15. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
    [CrossRef] [PubMed]
  16. G. M. Hale, M. R. Querry, “Optical constants of water in the 200 nm to 200 mm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  17. L. L. Shipman, T. M. Cotton, J. R. Norris, J. J. Katz, “An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomer in solution,” J. Am. Chem. Soc. 98, 8222–8230 (1979).
    [CrossRef]
  18. L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 4, 34–50 (1978).
    [CrossRef]
  19. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  20. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
    [CrossRef]
  21. J. Gross, Pigments in Fruits (Academic, London, 1987), Chaps. 2 and 3.
  22. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
    [CrossRef]

1999 (1)

J. A. Abbott, “Quality measurement of fruits and vegetables,” Post-harvest Biol. Technol. 15, 207–225 (1999).
[CrossRef]

1998 (2)

J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).

M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
[CrossRef]

1997 (2)

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

1995 (2)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today (March, 1995), pp. 34–40.

S. Feng, F. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).
[CrossRef] [PubMed]

1994 (3)

R. C. Haskell, L. O. Svasaand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

1990 (1)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

1989 (2)

1985 (1)

S. Gunasekaran, M. R. Paulsen, G. C. Shove, “Optical methods for non-destructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[CrossRef]

1979 (1)

L. L. Shipman, T. M. Cotton, J. R. Norris, J. J. Katz, “An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomer in solution,” J. Am. Chem. Soc. 98, 8222–8230 (1979).
[CrossRef]

1978 (1)

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

1973 (1)

Abbott, J. A.

J. A. Abbott, “Quality measurement of fruits and vegetables,” Post-harvest Biol. Technol. 15, 207–225 (1999).
[CrossRef]

Abe, H.

V. A. McGlone, H. Abe, S. Kawano, “Kiwifruit firmness by near infrared light scattering,” J. Near Infrared Spectrosc. 5, 83–89 (1997).
[CrossRef]

Andersson-Engels, S.

Bigio, I. J.

Boyer, J.

Chance, B.

Chen, P.

P. Chen, “Quality evaluation technology for agricultural products,” in Proceedings of the International Conference on Agricultural Machinery Engineering (Korean Society for Agriculture and Machinery, Seoul, 1996), pp. 171–204.

Cotton, T. M.

L. L. Shipman, T. M. Cotton, J. R. Norris, J. J. Katz, “An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomer in solution,” J. Am. Chem. Soc. 98, 8222–8230 (1979).
[CrossRef]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

De Baerdemaeker, J.

J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).

De Smedt, V.

J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).

Feng, S.

Feng, T.-C.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Furutsu, K.

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Fuselier, T.

Gross, J.

J. Gross, Pigments in Fruits (Academic, London, 1987), Chaps. 2 and 3.

Gunasekaran, S.

S. Gunasekaran, M. R. Paulsen, G. C. Shove, “Optical methods for non-destructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[CrossRef]

Hale, G. M.

Haskell, R. C.

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

Jain, A.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Johnson, T. M.

Katz, J. J.

L. L. Shipman, T. M. Cotton, J. R. Norris, J. J. Katz, “An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomer in solution,” J. Am. Chem. Soc. 98, 8222–8230 (1979).
[CrossRef]

Kawano, S.

V. A. McGlone, H. Abe, S. Kawano, “Kiwifruit firmness by near infrared light scattering,” J. Near Infrared Spectrosc. 5, 83–89 (1997).
[CrossRef]

Lammertyn, J.

J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).

Lasdon, L. S.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Liu, D. L.

McAdams, M. S.

McGlone, V. A.

V. A. McGlone, H. Abe, S. Kawano, “Kiwifruit firmness by near infrared light scattering,” J. Near Infrared Spectrosc. 5, 83–89 (1997).
[CrossRef]

Mourant, J. R.

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Nicolaï, B.

J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).

Nilsson, M. K.

Norris, J. R.

L. L. Shipman, T. M. Cotton, J. R. Norris, J. J. Katz, “An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomer in solution,” J. Am. Chem. Soc. 98, 8222–8230 (1979).
[CrossRef]

Ooms, K.

J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).

Ortiz, C.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Patterson, M. S.

Paulsen, M. R.

S. Gunasekaran, M. R. Paulsen, G. C. Shove, “Optical methods for non-destructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[CrossRef]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Querry, M. R.

Ratner, M.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Ruiz-Altisent, M.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Shipman, L. L.

L. L. Shipman, T. M. Cotton, J. R. Norris, J. J. Katz, “An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomer in solution,” J. Am. Chem. Soc. 98, 8222–8230 (1979).
[CrossRef]

Shove, G. C.

S. Gunasekaran, M. R. Paulsen, G. C. Shove, “Optical methods for non-destructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[CrossRef]

Sturesson, C.

Svasaand, L. O.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Tromberg, B. J.

Tsay, T.-T.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Valero, C.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Waren, A. D.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Wilson, B. C.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Yamada, Y.

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today (March, 1995), pp. 34–40.

Zeng, F.

ACM (Assoc. Comput. Mach.) Trans. Math. Software (1)

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Appl. Opt. (5)

IEEE J. Quantum Electron. (2)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

J. Agric. Eng. Res. (1)

S. Gunasekaran, M. R. Paulsen, G. C. Shove, “Optical methods for non-destructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[CrossRef]

J. Am. Chem. Soc. (1)

L. L. Shipman, T. M. Cotton, J. R. Norris, J. J. Katz, “An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomer in solution,” J. Am. Chem. Soc. 98, 8222–8230 (1979).
[CrossRef]

J. Near Infrared Spectrosc. (1)

V. A. McGlone, H. Abe, S. Kawano, “Kiwifruit firmness by near infrared light scattering,” J. Near Infrared Spectrosc. 5, 83–89 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Phys. Rev. E (1)

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Phys. Today (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today (March, 1995), pp. 34–40.

Post-harvest Biol. Technol. (1)

J. A. Abbott, “Quality measurement of fruits and vegetables,” Post-harvest Biol. Technol. 15, 207–225 (1999).
[CrossRef]

Trans. Am. Soc. Agric. Eng. (1)

J. Lammertyn, B. Nicolaï, K. Ooms, V. De Smedt, J. De Baerdemaeker, “Non-destructive measurement of acidity, soluble solid, and firmness of jonagold apples using NIR-spectroscopy,” Trans. Am. Soc. Agric. Eng. 41, 1089–1094 (1998).

Other (4)

P. Chen, “Quality evaluation technology for agricultural products,” in Proceedings of the International Conference on Agricultural Machinery Engineering (Korean Society for Agriculture and Machinery, Seoul, 1996), pp. 171–204.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

J. Gross, Pigments in Fruits (Academic, London, 1987), Chaps. 2 and 3.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, “Non-destructive measurements of the optical properties of fruits by means of time-resolved reflectance,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 445–449 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical TRS curves for a peach (open circles) and for a tomato (filled diamonds), instrumental response function (IRF, dashed curve), and best fit to the theoretical model (solid curve).

Fig. 2
Fig. 2

Typical absorption spectra of Golden Delicious apple (diamonds), Granny Smith apple (crosses), and Starking Delicious apple (triangles).

Fig. 3
Fig. 3

Typical absorption spectra of peach (diamonds), tomato (crosses), and kiwifruit (triangles).

Fig. 4
Fig. 4

Best fit of the absorption spectrum of a Starking Delicious apple to the line shape of water16 and chlorophyll a.17

Fig. 5
Fig. 5

Typical transport scattering spectra of Starking Delicious (gray diamonds), Golden Delicious (open diamonds), Granny Smith (filled diamonds), peach (filled triangles), tomato (filled circles), and kiwifruit (open squares).

Fig. 6
Fig. 6

Best fit of the transport scattering spectrum to the approximation of Mie theory [Eq. (2)]: Granny Smith apple (squares), peach (triangles), and kiwifruit (diamonds).

Tables (2)

Tables Icon

Table 1 Chlorophyll a and Water Content in Different Fruits as Derived from the Best Fit of the Absorption Spectrum to the Line Shape of the Constituents

Tables Icon

Table 2 Parameters a and b as Obtained from the Best Fit of the Transport Scattering Spectrum to μ s ′ = ax b and Equivalent Average Radius r of Scattering Centersa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

μaλ=iciεiλ,
μsλ=axb,

Metrics