Abstract

The application of LED technology to fields such as alphanumerical displays and traffic control is continuously increasing. Because the technology is used outdoors, it must be able to operate under various environmental conditions. Like all semiconductor devices, LED’s have properties that change with temperature. We propose a semiempirical model, based on semiconductor solid-state theory, that predicts the changes in the emission spectrum including the effect of temperature changes on the optical properties of the LED, within a range appropriate for outdoor applications (0–40 °C). This model permits us to evaluate the changes in the output flux and the chromaticity coordinates of the LED. We checked this model with seven different LED’s.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Moss, M. Balkanski, Handbook on Semiconductors: Optical Properties of Semiconductors (Elsevier Science, Amsterdam, 1994), Vol. 2.
  2. A. W. Smith, K. F. Brennan, “Non-parabolic hydrodynamics formulations for the simulation of inhomogeneous semiconductor devices,” Solid-State Electron. 39, 1659–1668 (1996).
    [CrossRef]
  3. I. A. Vainshetein, A. F. Zatsepin, V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
    [CrossRef]
  4. K. J. Ebeling, Integrated Optoelectronics (Springer-Verlag, Berlin, 1993).
    [CrossRef]
  5. A. W. Smith, K. F. Brennan, “Comparison of non-parabolic hydrodynamic simulations for semiconductor devices,” Solid-State Electron. 39, 1055–1063 (1996).
    [CrossRef]
  6. M. C. Cheng, L. Guo, R. M. Fithen, Y. Luo, “A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+–n–n+ device,” J. Phys. D 30, 2343–2353 (1997).
    [CrossRef]

1999 (1)

I. A. Vainshetein, A. F. Zatsepin, V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

1997 (1)

M. C. Cheng, L. Guo, R. M. Fithen, Y. Luo, “A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+–n–n+ device,” J. Phys. D 30, 2343–2353 (1997).
[CrossRef]

1996 (2)

A. W. Smith, K. F. Brennan, “Non-parabolic hydrodynamics formulations for the simulation of inhomogeneous semiconductor devices,” Solid-State Electron. 39, 1659–1668 (1996).
[CrossRef]

A. W. Smith, K. F. Brennan, “Comparison of non-parabolic hydrodynamic simulations for semiconductor devices,” Solid-State Electron. 39, 1055–1063 (1996).
[CrossRef]

Balkanski, M.

T. S. Moss, M. Balkanski, Handbook on Semiconductors: Optical Properties of Semiconductors (Elsevier Science, Amsterdam, 1994), Vol. 2.

Brennan, K. F.

A. W. Smith, K. F. Brennan, “Non-parabolic hydrodynamics formulations for the simulation of inhomogeneous semiconductor devices,” Solid-State Electron. 39, 1659–1668 (1996).
[CrossRef]

A. W. Smith, K. F. Brennan, “Comparison of non-parabolic hydrodynamic simulations for semiconductor devices,” Solid-State Electron. 39, 1055–1063 (1996).
[CrossRef]

Cheng, M. C.

M. C. Cheng, L. Guo, R. M. Fithen, Y. Luo, “A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+–n–n+ device,” J. Phys. D 30, 2343–2353 (1997).
[CrossRef]

Ebeling, K. J.

K. J. Ebeling, Integrated Optoelectronics (Springer-Verlag, Berlin, 1993).
[CrossRef]

Fithen, R. M.

M. C. Cheng, L. Guo, R. M. Fithen, Y. Luo, “A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+–n–n+ device,” J. Phys. D 30, 2343–2353 (1997).
[CrossRef]

Guo, L.

M. C. Cheng, L. Guo, R. M. Fithen, Y. Luo, “A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+–n–n+ device,” J. Phys. D 30, 2343–2353 (1997).
[CrossRef]

Kortov, V. S.

I. A. Vainshetein, A. F. Zatsepin, V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

Luo, Y.

M. C. Cheng, L. Guo, R. M. Fithen, Y. Luo, “A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+–n–n+ device,” J. Phys. D 30, 2343–2353 (1997).
[CrossRef]

Moss, T. S.

T. S. Moss, M. Balkanski, Handbook on Semiconductors: Optical Properties of Semiconductors (Elsevier Science, Amsterdam, 1994), Vol. 2.

Smith, A. W.

A. W. Smith, K. F. Brennan, “Comparison of non-parabolic hydrodynamic simulations for semiconductor devices,” Solid-State Electron. 39, 1055–1063 (1996).
[CrossRef]

A. W. Smith, K. F. Brennan, “Non-parabolic hydrodynamics formulations for the simulation of inhomogeneous semiconductor devices,” Solid-State Electron. 39, 1659–1668 (1996).
[CrossRef]

Vainshetein, I. A.

I. A. Vainshetein, A. F. Zatsepin, V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

Zatsepin, A. F.

I. A. Vainshetein, A. F. Zatsepin, V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

J. Phys. D (1)

M. C. Cheng, L. Guo, R. M. Fithen, Y. Luo, “A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+–n–n+ device,” J. Phys. D 30, 2343–2353 (1997).
[CrossRef]

Phys. Solid State (1)

I. A. Vainshetein, A. F. Zatsepin, V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

Solid-State Electron. (2)

A. W. Smith, K. F. Brennan, “Non-parabolic hydrodynamics formulations for the simulation of inhomogeneous semiconductor devices,” Solid-State Electron. 39, 1659–1668 (1996).
[CrossRef]

A. W. Smith, K. F. Brennan, “Comparison of non-parabolic hydrodynamic simulations for semiconductor devices,” Solid-State Electron. 39, 1055–1063 (1996).
[CrossRef]

Other (2)

T. S. Moss, M. Balkanski, Handbook on Semiconductors: Optical Properties of Semiconductors (Elsevier Science, Amsterdam, 1994), Vol. 2.

K. J. Ebeling, Integrated Optoelectronics (Springer-Verlag, Berlin, 1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to measure LED spectrum and detail of LED cooling–heating system.

Fig. 2
Fig. 2

Experimental spectra for two LED’s at 0 (○), 20 (□), and 40 °C (*). Solid curves correspond, for each case, to the semiempirical calculated results: (a) 660-A and (b) 585-C.

Fig. 3
Fig. 3

Semiempirical variations of the CIE 31 (Commission Internationale de l’Eclairage) chromatic coordinates for all LED’s: (◇) company C λpeak = 585, (★) company B λpeak = 592, (○) company A λpeak = 595, (▽) company B λpeak = 609, (□) company A λpeak = 625, (☆) company B λpeak = 630, and (△) company A λpeak = 660.

Tables (5)

Tables Icon

Table 1 Experimental (E) and Semiempirical (S) Values of Peak Wavelengths (λ p ) and Spectrum Bandwidth (Δλ1/2) for all Measured LED’s

Tables Icon

Table 2 Estimated Parameters for the Semiempirical Model That Fit the Experimental Measurements

Tables Icon

Table 3 Semiempirical and Experimental Radiometric Fluxes, Relative to Spectrum Shape in Arbitrary Units, for all LED’s

Tables Icon

Table 4 Semiempirical and Experimental Photometric Fluxes, Relative to Spectrum Shape in Arbitrary Units, for all LED’s

Tables Icon

Table 5 Semiempirical CIEa 1931 Chromatic Coordinates for All LED’s

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

rE=A12nE*hE,
nE=NnEFnE,
hE=NhEFhE,
Fn=1expE-EfnkT+1,
Fh=1expEfh-EkT+1,
xEy=p2/2m,
nE=C1E-Ec3y/2-11expE-EfnkT+1, for E>Ec,
hE=C2Ev-E3y/2-11expEfh-EkT+1, for E<Ev,
EgT=Eg0-αT2/β+T,
nE=C1E-Eg0+αT2β+T3y/2-11expE-EfnkT+1, for E>EgT,
hE=C2Ev-E3y/2-11expEfh-EkT+1, for E<Ev.
ϕ=-VλSλdλ,

Metrics