Abstract

Eppley’s precision spectral pyranometer (PSP) is used in networks around the world to measure downwelling diffuse and global solar irradiance at the surface of the Earth. In recent years several studies have shown significant discrepancy between irradiances measured by pyranometers and those computed by atmospheric radiative transfer models. Pyranometer measurements have been questioned because observed diffuse irradiances sometimes are below theoretical minimum values for a pure molecular atmosphere, and at night the instruments often produce nonzero signals ranging between +5 and -10 W m-2. We install thermistor sondes in the body of a PSP as well as on its inner dome to monitor the temperature gradients within the instrument, and we operate a pyrgeometer (PIR) instrument side by side with the PSP. We derive a relationship between the PSP output and thermal radiative exchange by the dome and the detector and a relationship between the PSP output and the PIR thermopile output (net–IR). We determine the true PSP offset by quickly capping the instrument at set time intervals. For a ventilated and shaded PSP, the thermal offset can reach -15 W m-2 under clear skies, whereas it remains close to zero for low overcast clouds. We estimate the PSP thermal offset by two methods: (1) using the PSP temperatures and (2) using the PIR net–IR signal. The offset computed from the PSP temperatures yields a reliable estimate of the true offset (±1 W m-2). The offset computed from net–IR is consistent with the true offset at night and under overcast skies but predicts only part of the true range under clear skies.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. B. McArthur, Baseline Surface Radiation Network (BSRN) operations manual, Version 1.0, WMO/TD 879 (World Meteorological Organization, Geneva, 1998).
  2. Guide to meteorological instruments and methods of observation, WMO 8, 6th ed. (Secretariat of the World Meteorological Organization, Geneva, 1996).
  3. I. R. Reda, “Improving the accuracy of using pyranometers to measure the clear sky global solar irradiance,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).
  4. J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
    [CrossRef]
  5. A. J. Drummond, J. J. Roche, “Corrections to be applied to measurements made with Eppley (and other) spectral radiometers when used with Schott colored glass filters,” J. Appl. Meteorol. 4, 741–744 (1965).
    [CrossRef]
  6. N. Robinson, Solar Radiation (Elsevier, New York, 1966), pp. 247–271.
  7. A. Gulbrandsen, “On the use of pyranometers in the study of spectral solar radiation and atmospheric aerosols,” J. Appl. Meteorol. 17, 899–904 (1978).
    [CrossRef]
  8. T. P. Charlock, T. L. Alberta, “The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meteorol. Soc. 77, 2673–2683 (1996).
    [CrossRef]
  9. S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
    [CrossRef]
  10. S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
    [CrossRef]
  11. R. D. Cess, Institute for Planetary Atmospheres, Marine Sciences Research Center, State University of New York, Stony Brook, N.Y. 11794–5000 (personal communication, 1999).
  12. M. Wild, “Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings,” J. Geophys. Res. 104, 27361–27373 (1999).
    [CrossRef]
  13. W. C. Conant, “An observational approach for determining aerosol surface radiative forcing: results from the first field phase of INDOEX,” J. Geophys. Res. 105, 15347–15360 (2000).
    [CrossRef]
  14. B. C. Bush, F. P. J. Valero, A. S. Simpson, L. Bignone, “Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation,” J. Atmos. Oceanic Technol. 17, 165–175 (2000).
    [CrossRef]
  15. J. Hickey, The Eppley Laboratory, Inc., P.O. Box 419, 12 Sheffield Ave., Newport, R.I. 02840 (personal communication, 1999).
  16. R. Gardon, “The emissivity of transparent materials,” J. Am. Ceramic Soc. 39, 278–285 (1956).
    [CrossRef]
  17. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).
  18. B. W. Forgan, “A new method for calibrating reference and field pyranometers,” J. Atmos. Oceanic Technol. 13, 638–645 (1996).
    [CrossRef]
  19. B. Albrecht, M. Peollet, S. K. Cox, “Pyrgeometer measurements from aircraft,” Rev. Sci. Instrum. 45, 33–38 (1974).
    [CrossRef]
  20. R. Philipona, C. Frohlich, Ch. Betz, “Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements,” Appl. Opt. 34, 1598–1605 (1995).
    [CrossRef] [PubMed]
  21. C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
    [CrossRef]
  22. M. P. Haeffelin, C. K. Rutledge, S. Kato, A. M. Smith, J. R. Mahan, “The uncertainty in surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).
  23. A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
    [CrossRef]
  24. O. B. Toon, C. P. Mckay, T. P. Ackerman, “Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmosphere,” J. Geophys. Res. 94, 16287–16301 (1989).
    [CrossRef]
  25. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  26. E. G. Dutton, Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration R/CMDL1, 325 Broadway, Boulder, Colo. 80303 (personal communication, 2000).
  27. T. L. Alberta, T. P. Charlock, “A comprehensive resource for the investigation of shortwave fluxes in clear conditions: CAGEX version 3,” in Preprints of the Tenth Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1999), pp. 279–282.
  28. R. N. Halthore, S. E. Schwartz, E. G. Dutton, “Diffuse shortwave irradiance at surface—further issues and implications,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

2000

W. C. Conant, “An observational approach for determining aerosol surface radiative forcing: results from the first field phase of INDOEX,” J. Geophys. Res. 105, 15347–15360 (2000).
[CrossRef]

B. C. Bush, F. P. J. Valero, A. S. Simpson, L. Bignone, “Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation,” J. Atmos. Oceanic Technol. 17, 165–175 (2000).
[CrossRef]

1999

S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
[CrossRef]

M. Wild, “Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings,” J. Geophys. Res. 104, 27361–27373 (1999).
[CrossRef]

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

1998

C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
[CrossRef]

1997

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

1996

B. W. Forgan, “A new method for calibrating reference and field pyranometers,” J. Atmos. Oceanic Technol. 13, 638–645 (1996).
[CrossRef]

T. P. Charlock, T. L. Alberta, “The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meteorol. Soc. 77, 2673–2683 (1996).
[CrossRef]

1995

1989

O. B. Toon, C. P. Mckay, T. P. Ackerman, “Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmosphere,” J. Geophys. Res. 94, 16287–16301 (1989).
[CrossRef]

1978

A. Gulbrandsen, “On the use of pyranometers in the study of spectral solar radiation and atmospheric aerosols,” J. Appl. Meteorol. 17, 899–904 (1978).
[CrossRef]

1974

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

B. Albrecht, M. Peollet, S. K. Cox, “Pyrgeometer measurements from aircraft,” Rev. Sci. Instrum. 45, 33–38 (1974).
[CrossRef]

1965

A. J. Drummond, J. J. Roche, “Corrections to be applied to measurements made with Eppley (and other) spectral radiometers when used with Schott colored glass filters,” J. Appl. Meteorol. 4, 741–744 (1965).
[CrossRef]

1956

R. Gardon, “The emissivity of transparent materials,” J. Am. Ceramic Soc. 39, 278–285 (1956).
[CrossRef]

Ackerman, T. P.

S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
[CrossRef]

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

O. B. Toon, C. P. Mckay, T. P. Ackerman, “Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmosphere,” J. Geophys. Res. 94, 16287–16301 (1989).
[CrossRef]

Alberta, T. L.

T. P. Charlock, T. L. Alberta, “The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meteorol. Soc. 77, 2673–2683 (1996).
[CrossRef]

T. L. Alberta, T. P. Charlock, “A comprehensive resource for the investigation of shortwave fluxes in clear conditions: CAGEX version 3,” in Preprints of the Tenth Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1999), pp. 279–282.

Albrecht, B.

B. Albrecht, M. Peollet, S. K. Cox, “Pyrgeometer measurements from aircraft,” Rev. Sci. Instrum. 45, 33–38 (1974).
[CrossRef]

Anderson, S. P.

C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
[CrossRef]

Betz, Ch.

Bignone, L.

B. C. Bush, F. P. J. Valero, A. S. Simpson, L. Bignone, “Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation,” J. Atmos. Oceanic Technol. 17, 165–175 (2000).
[CrossRef]

Bradley, E. F.

C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
[CrossRef]

Bush, B. C.

B. C. Bush, F. P. J. Valero, A. S. Simpson, L. Bignone, “Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation,” J. Atmos. Oceanic Technol. 17, 165–175 (2000).
[CrossRef]

Cess, R. D.

R. D. Cess, Institute for Planetary Atmospheres, Marine Sciences Research Center, State University of New York, Stony Brook, N.Y. 11794–5000 (personal communication, 1999).

Charlock, T. P.

T. P. Charlock, T. L. Alberta, “The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meteorol. Soc. 77, 2673–2683 (1996).
[CrossRef]

T. L. Alberta, T. P. Charlock, “A comprehensive resource for the investigation of shortwave fluxes in clear conditions: CAGEX version 3,” in Preprints of the Tenth Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1999), pp. 279–282.

Clothiaux, E. E.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

Conant, W. C.

W. C. Conant, “An observational approach for determining aerosol surface radiative forcing: results from the first field phase of INDOEX,” J. Geophys. Res. 105, 15347–15360 (2000).
[CrossRef]

Cox, S. K.

B. Albrecht, M. Peollet, S. K. Cox, “Pyrgeometer measurements from aircraft,” Rev. Sci. Instrum. 45, 33–38 (1974).
[CrossRef]

DeLuisi, J.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

Drummond, A. J.

A. J. Drummond, J. J. Roche, “Corrections to be applied to measurements made with Eppley (and other) spectral radiometers when used with Schott colored glass filters,” J. Appl. Meteorol. 4, 741–744 (1965).
[CrossRef]

Dutton, E.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

Dutton, E. G.

S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
[CrossRef]

E. G. Dutton, Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration R/CMDL1, 325 Broadway, Boulder, Colo. 80303 (personal communication, 2000).

R. N. Halthore, S. E. Schwartz, E. G. Dutton, “Diffuse shortwave irradiance at surface—further issues and implications,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

Fairall, C. W.

C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
[CrossRef]

Forgan, B. W.

B. W. Forgan, “A new method for calibrating reference and field pyranometers,” J. Atmos. Oceanic Technol. 13, 638–645 (1996).
[CrossRef]

Frohlich, C.

Gardon, R.

R. Gardon, “The emissivity of transparent materials,” J. Am. Ceramic Soc. 39, 278–285 (1956).
[CrossRef]

Gulbrandsen, A.

A. Gulbrandsen, “On the use of pyranometers in the study of spectral solar radiation and atmospheric aerosols,” J. Appl. Meteorol. 17, 899–904 (1978).
[CrossRef]

Haeffelin, M. P.

M. P. Haeffelin, C. K. Rutledge, S. Kato, A. M. Smith, J. R. Mahan, “The uncertainty in surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
[CrossRef]

Halthore, R. N.

R. N. Halthore, S. E. Schwartz, E. G. Dutton, “Diffuse shortwave irradiance at surface—further issues and implications,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hickey, J.

J. Hickey, The Eppley Laboratory, Inc., P.O. Box 419, 12 Sheffield Ave., Newport, R.I. 02840 (personal communication, 1999).

Kato, S.

S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
[CrossRef]

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
[CrossRef]

M. P. Haeffelin, C. K. Rutledge, S. Kato, A. M. Smith, J. R. Mahan, “The uncertainty in surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

Larson, N.

S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
[CrossRef]

Laulainen, N.

S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
[CrossRef]

Mace, G. G.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

Mahan, J. R.

A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
[CrossRef]

M. P. Haeffelin, C. K. Rutledge, S. Kato, A. M. Smith, J. R. Mahan, “The uncertainty in surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

Mather, J. H.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

McArthur, L. J. B.

L. J. B. McArthur, Baseline Surface Radiation Network (BSRN) operations manual, Version 1.0, WMO/TD 879 (World Meteorological Organization, Geneva, 1998).

Mckay, C. P.

O. B. Toon, C. P. Mckay, T. P. Ackerman, “Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmosphere,” J. Geophys. Res. 94, 16287–16301 (1989).
[CrossRef]

Michalsky, J.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

Murcray, F.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

Nelson, D.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

Nevarez, F. J.

A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
[CrossRef]

Payne, R. E.

C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
[CrossRef]

Peollet, M.

B. Albrecht, M. Peollet, S. K. Cox, “Pyrgeometer measurements from aircraft,” Rev. Sci. Instrum. 45, 33–38 (1974).
[CrossRef]

Persson, P. O. G.

C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
[CrossRef]

Philipona, R.

Reda, I. R.

I. R. Reda, “Improving the accuracy of using pyranometers to measure the clear sky global solar irradiance,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

Robinson, N.

N. Robinson, Solar Radiation (Elsevier, New York, 1966), pp. 247–271.

Roche, J. J.

A. J. Drummond, J. J. Roche, “Corrections to be applied to measurements made with Eppley (and other) spectral radiometers when used with Schott colored glass filters,” J. Appl. Meteorol. 4, 741–744 (1965).
[CrossRef]

Rubes, M.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

Rutledge, C. K.

M. P. Haeffelin, C. K. Rutledge, S. Kato, A. M. Smith, J. R. Mahan, “The uncertainty in surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
[CrossRef]

Schwartz, S. E.

R. N. Halthore, S. E. Schwartz, E. G. Dutton, “Diffuse shortwave irradiance at surface—further issues and implications,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

Simpson, A. S.

B. C. Bush, F. P. J. Valero, A. S. Simpson, L. Bignone, “Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation,” J. Atmos. Oceanic Technol. 17, 165–175 (2000).
[CrossRef]

Smith, A. M.

M. P. Haeffelin, C. K. Rutledge, S. Kato, A. M. Smith, J. R. Mahan, “The uncertainty in surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
[CrossRef]

Splitt, M.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

Stoffel, T.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

Toon, O. B.

O. B. Toon, C. P. Mckay, T. P. Ackerman, “Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmosphere,” J. Geophys. Res. 94, 16287–16301 (1989).
[CrossRef]

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Valero, F. P. J.

B. C. Bush, F. P. J. Valero, A. S. Simpson, L. Bignone, “Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation,” J. Atmos. Oceanic Technol. 17, 165–175 (2000).
[CrossRef]

Wesely, M. L.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

Wesley, M.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

Wild, M.

M. Wild, “Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings,” J. Geophys. Res. 104, 27361–27373 (1999).
[CrossRef]

Appl. Opt.

Bull. Am. Meteorol. Soc.

T. P. Charlock, T. L. Alberta, “The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meteorol. Soc. 77, 2673–2683 (1996).
[CrossRef]

J. Am. Ceramic Soc.

R. Gardon, “The emissivity of transparent materials,” J. Am. Ceramic Soc. 39, 278–285 (1956).
[CrossRef]

J. Appl. Meteorol.

A. Gulbrandsen, “On the use of pyranometers in the study of spectral solar radiation and atmospheric aerosols,” J. Appl. Meteorol. 17, 899–904 (1978).
[CrossRef]

A. J. Drummond, J. J. Roche, “Corrections to be applied to measurements made with Eppley (and other) spectral radiometers when used with Schott colored glass filters,” J. Appl. Meteorol. 4, 741–744 (1965).
[CrossRef]

J. Atmos. Oceanic Technol.

J. Michalsky, E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, J. DeLuisi, “Optimal measurement of surface shortwave irradiance using current instrumentation,” J. Atmos. Oceanic Technol. 16, 55–69 (1999).
[CrossRef]

B. C. Bush, F. P. J. Valero, A. S. Simpson, L. Bignone, “Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation,” J. Atmos. Oceanic Technol. 17, 165–175 (2000).
[CrossRef]

C. W. Fairall, P. O. G. Persson, E. F. Bradley, R. E. Payne, S. P. Anderson, “A new look at calibration and use of Eppley precision infrared radiometers. Part I: theory and applications,” J. Atmos. Oceanic Technol. 15, 1229–1242 (1998).
[CrossRef]

B. W. Forgan, “A new method for calibrating reference and field pyranometers,” J. Atmos. Oceanic Technol. 13, 638–645 (1996).
[CrossRef]

J. Geophys. Res.

O. B. Toon, C. P. Mckay, T. P. Ackerman, “Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmosphere,” J. Geophys. Res. 94, 16287–16301 (1989).
[CrossRef]

M. Wild, “Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings,” J. Geophys. Res. 104, 27361–27373 (1999).
[CrossRef]

W. C. Conant, “An observational approach for determining aerosol surface radiative forcing: results from the first field phase of INDOEX,” J. Geophys. Res. 105, 15347–15360 (2000).
[CrossRef]

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25881–25898 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

S. Kato, T. P. Ackerman, E. G. Dutton, N. Laulainen, N. Larson, “A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 61, 493–502 (1999).
[CrossRef]

Rev. Sci. Instrum.

B. Albrecht, M. Peollet, S. K. Cox, “Pyrgeometer measurements from aircraft,” Rev. Sci. Instrum. 45, 33–38 (1974).
[CrossRef]

Space Sci. Rev.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other

E. G. Dutton, Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration R/CMDL1, 325 Broadway, Boulder, Colo. 80303 (personal communication, 2000).

T. L. Alberta, T. P. Charlock, “A comprehensive resource for the investigation of shortwave fluxes in clear conditions: CAGEX version 3,” in Preprints of the Tenth Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1999), pp. 279–282.

R. N. Halthore, S. E. Schwartz, E. G. Dutton, “Diffuse shortwave irradiance at surface—further issues and implications,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

M. P. Haeffelin, C. K. Rutledge, S. Kato, A. M. Smith, J. R. Mahan, “The uncertainty in surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

A. M. Smith, M. P. Haeffelin, F. J. Nevarez, J. R. Mahan, S. Kato, C. K. Rutledge, “Experimental and theoretical study of uncertainty in pyranometers for surface radiation,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. Lurie, eds., Proc. SPIE3870, 536–547 (1999).
[CrossRef]

R. D. Cess, Institute for Planetary Atmospheres, Marine Sciences Research Center, State University of New York, Stony Brook, N.Y. 11794–5000 (personal communication, 1999).

N. Robinson, Solar Radiation (Elsevier, New York, 1966), pp. 247–271.

L. J. B. McArthur, Baseline Surface Radiation Network (BSRN) operations manual, Version 1.0, WMO/TD 879 (World Meteorological Organization, Geneva, 1998).

Guide to meteorological instruments and methods of observation, WMO 8, 6th ed. (Secretariat of the World Meteorological Organization, Geneva, 1996).

I. R. Reda, “Improving the accuracy of using pyranometers to measure the clear sky global solar irradiance,” in Proceedings of the Ninth ARM Science Team Meeting (available from the U.S. Department of Commerce, Springfield, Va. 22161, 1999).

J. Hickey, The Eppley Laboratory, Inc., P.O. Box 419, 12 Sheffield Ave., Newport, R.I. 02840 (personal communication, 1999).

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic depiction of a pyranometer with a thermistor bonded to the inner dome and a thermistor embedded in the heat sink next to the cold junction of the thermopile. The outer-dome thermistors, used in the laboratory experiment, are shown by dashed curves. The large black arrows represent incoming solar radiation, and the narrow gray arrows indicate the exchange of IR radiation between the domes and the detector.

Fig. 2
Fig. 2

One-dimensional temperature gradient along the inner dome at two different time steps of a cooling and a warming experiment. The optimal location for the thermistor to measure the effective temperature of the inner dome is shown by the vertical lines.

Fig. 3
Fig. 3

Time series of detector temperature (solid curve), inner-dome temperature (dotted curve), and two outer dome temperatures (dashed and dotted–dashed curves) during a cooling experiment.

Fig. 4
Fig. 4

Time series of the PSP output signal (solid curve), the theoretical blackbody radiative exchange between the inner dome and the detector (dotted–dashed curve), and between the outer dome and the detector (dashed line) during a cooling experiment.

Fig. 5
Fig. 5

Relationship between the inner-dome-to-detector theoretical blackbody radiative exchange and the PSP output signal during a cooling experiment.

Fig. 6
Fig. 6

Relationship between the outer-dome-to-detector theoretical blackbody radiative exchange and the PSP output signal during a cooling experiment.

Fig. 7
Fig. 7

Relationship between the outer-dome-to-detector theoretical blackbody radiative exchange and the PSP output signal during a cooling experiment, in which the inner dome of the PSP is removed.

Fig. 8
Fig. 8

Relationship between the inner-dome-to-detector theoretical blackbody radiative exchange and the PSP output signal during rooftop measurements at night (25 November to 2 December 1999).

Fig. 9
Fig. 9

Time series of PSP output signal (solid curve), computed diffuse solar irradiance at the surface in Rayleigh atmosphere (dotted–dashed curve), PSP thermal offset derived from temperature measurements (dotted curve), and corrected PSP output signal (dashed curve) under clear-sky conditions (1 December 1999).

Fig. 10
Fig. 10

Effect of instrument capping on the PSP output signal (solid curve) and the temperature-derived thermal offset (dotted curve). The corrected PSP output signal is shown as the dashed curve.

Fig. 11
Fig. 11

True thermal offsets estimated from capping experiments versus thermal offsets derived from temperature measurements.

Fig. 12
Fig. 12

Relationship between the net-IR signal from a PIR and the PSP output signal during rooftop measurements at night (25 November to 2 December 1999). The solid curve shows the unmodified regression (slope 0.03), and the dashed curve shows the regression forced through a zero intercept (slope 0.047).

Fig. 13
Fig. 13

Time series of PSP output signal (solid curve), computed diffuse solar irradiance at the surface in Rayleigh atmosphere (dotted–dashed curve), PSP thermal offset derived from net-IR measurements (dotted curve), and corrected PSP output signal (dashed curve) under clear-sky conditions (1 December 1999).

Fig. 14
Fig. 14

Eight diurnal cycles of PSP output signals during daytime and nighttime rooftop measurements (25 November to 2 December 1999, days of the year 329–336). The standard PSP output signal is shown in black, the corrected PSP with PSP temperatures in red, and the corrected PSP with net-IR in green. Days 329 and 330 are mostly cloudy, and days 331–336 are mostly clear.

Fig. 15
Fig. 15

Eight diurnal cycles of estimated PSP offsets during daytime and nighttime rooftop measurements (25 November to 2 December 1999, days of the year 329–336). The temperature-derived offset is shown in red, and the offset derived from net-IR measurements is shown in green. Days 329 and 330 are mostly cloudy, and days 331–336 are mostly clear.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

FGlo=FDif+μFDir,
Fnet=αsτdE+αsεdσTd4+αsεsρdσTs4-εsσTs4,
E=UeSαsτdc+4σSτd1-εsρdTb3+εdστdεsTb4-Td4+στd1-αsTb4,
E=C1Ue+C2σTb4-Td4,
VOffset=AσTd4-Tb4+B.
ECorrDiff=EDiff-EOffset.
OffsetPSP=A×PIR+B.

Metrics