Abstract

A photoconductive switch-arrayed antenna with a chemical vapor-deposited diamond film was developed to generate high-power terahertz (THz) radiation. With this device, an electric field stress of 2 × 106 V/cm can be applied to photoconductive gaps because of the high breakdown threshold of diamond and the overcoated gap structure for the prevention of surface flashover. This level of field stress can alleviate the current problem of saturation in THz emission by use of a photoconductive antenna. The device consists of more than two thousand 20 µm × 2.8 mm emitters. In an experiment using an ultrashort pulse Kr*F laser, we obtained an energy density of 10 µJ/cm2 on the emitter surface at E = 105 V/cm. This density was larger than that of the current large-aperture antenna. There was no severe saturation in photoconductive current up to E = 106 V/cm, and a focused intensity of 200 MW/cm2 can be expected.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Yang, P. L. Richards, Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNBO3,” Appl. Phys. Lett. 19, 320–323 (1971).
    [CrossRef]
  2. Y. R. Shen, “For-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207–238 (1976).
    [CrossRef]
  3. D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
    [CrossRef]
  4. Z. Jiang, X.-C. Zhang, “Electro-optics measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
    [CrossRef]
  5. R. R. Jones, D. You, P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
    [CrossRef] [PubMed]
  6. J. Ahn, D. N. Hutchinson, C. Rangan, P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179–1182 (2001).
    [CrossRef] [PubMed]
  7. D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).
    [CrossRef] [PubMed]
  8. B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
    [CrossRef]
  9. G. Rodriguez, A. J. Taylor, “Screening of the bias field in terahertz generation from photoconductors,” Opt. Lett. 21, 1046–1048 (1996).
    [CrossRef] [PubMed]
  10. G. Rodriguez, S. R. Caceres, A. J. Taylor, “Modeling of terahertz radiation from biased photoconductors: transient velocity effects,” Opt. Lett. 19, 1994–1996 (1994).
    [CrossRef] [PubMed]
  11. H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
    [CrossRef]
  12. H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
    [CrossRef]
  13. H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
    [CrossRef]
  14. H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
    [CrossRef]

2001

J. Ahn, D. N. Hutchinson, C. Rangan, P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179–1182 (2001).
[CrossRef] [PubMed]

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

2000

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

1998

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
[CrossRef]

Z. Jiang, X.-C. Zhang, “Electro-optics measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[CrossRef]

1996

1995

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
[CrossRef]

1994

1993

D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).
[CrossRef] [PubMed]

R. R. Jones, D. You, P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

1990

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

1984

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

1976

Y. R. Shen, “For-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207–238 (1976).
[CrossRef]

1971

K. P. Yang, P. L. Richards, Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNBO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[CrossRef]

Ahn, J.

J. Ahn, D. N. Hutchinson, C. Rangan, P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179–1182 (2001).
[CrossRef] [PubMed]

Aikawa, Y.

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
[CrossRef]

Auston, D. H.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Baba, K.

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
[CrossRef]

Bucksbaum, P. H.

J. Ahn, D. N. Hutchinson, C. Rangan, P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179–1182 (2001).
[CrossRef] [PubMed]

D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).
[CrossRef] [PubMed]

R. R. Jones, D. You, P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

Caceres, S. R.

Cheung, K. P.

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Darrow, J. T.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

Dykaar, D. R.

Hu, B. B.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

Hutchinson, D. N.

J. Ahn, D. N. Hutchinson, C. Rangan, P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179–1182 (2001).
[CrossRef] [PubMed]

Jiang, Z.

Z. Jiang, X.-C. Zhang, “Electro-optics measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[CrossRef]

Jones, R. R.

R. R. Jones, D. You, P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).
[CrossRef] [PubMed]

Khazan, M.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

Kuzel, P.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

Nemec, H.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

Pashkin, A.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

Rangan, C.

J. Ahn, D. N. Hutchinson, C. Rangan, P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179–1182 (2001).
[CrossRef] [PubMed]

Richards, P. L.

K. P. Yang, P. L. Richards, Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNBO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[CrossRef]

Rodriguez, G.

Schnull, S.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “For-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207–238 (1976).
[CrossRef]

K. P. Yang, P. L. Richards, Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNBO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[CrossRef]

Shohata, N.

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
[CrossRef]

Smith, P. R.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Taylor, A. J.

Tokuyama, K.

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

Ueda, K.

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
[CrossRef]

Wilke, I.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

Yamamoto, H.

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

Yamazaki, R.

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

Yang, K. P.

K. P. Yang, P. L. Richards, Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNBO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[CrossRef]

Yoneda, H.

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
[CrossRef]

You, D.

R. R. Jones, D. You, P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).
[CrossRef] [PubMed]

Zhang, X.-C.

Z. Jiang, X.-C. Zhang, “Electro-optics measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

Appl. Phys. Lett.

D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Z. Jiang, X.-C. Zhang, “Electro-optics measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 1945–1947 (1998).
[CrossRef]

K. P. Yang, P. L. Richards, Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNBO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[CrossRef]

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength,” Appl. Phys. Lett. 66, 460–462 (1995).
[CrossRef]

H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba, “Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film,” Appl. Phys. Lett. 77, 1425–1428 (2000).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, P. R. Smith, “Optically steerable photoconductive antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[CrossRef]

J. Appl. Phys.

H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, “The grain size dependence of the mobility and lifetime in chemical vapor deposited diamond photoconductive switches,” J. Appl. Phys. 83, 1730–1733 (1998).
[CrossRef]

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

R. R. Jones, D. You, P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993).
[CrossRef] [PubMed]

J. Ahn, D. N. Hutchinson, C. Rangan, P. H. Bucksbaum, “Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse,” Phys. Rev. Lett. 86, 1179–1182 (2001).
[CrossRef] [PubMed]

Prog. Quantum Electron.

Y. R. Shen, “For-infrared generation by optical mixing,” Prog. Quantum Electron. 4, 207–238 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photograph of the CVD diamond THz emitter. A single unit PCD gap had a width of 20 µm and a length of 2.8 mm. The total number of PCD gaps in the 3 cm × 3 cm area was more than two thousand. To prevent degradation of the emitter performance because of a breakdown in the minor PCD gap, the gaps were divided into 18 clusters (3 × 6 in this figure) and were connected to a high-voltage power supply with relatively high impedance lines. The binary mask was used for amplitude spatial modulation of the illuminating laser.

Fig. 2
Fig. 2

Measured THz signal waveform from a CVD diamond PCD signal. Because of the longer lifetime of the PCD detector, we used the temporal derivation of the measured signal to obtain the waveform of the electric field of the THz radiation. This deconvolution is also shown. The pulse duration of the main component was 1.5 ps.

Fig. 3
Fig. 3

Dependence of THz energy on the applied electric field at the PCD signal. The energy was proportional to the square of the applied electric field. The estimated THz energy density of the emitter surface was 0.1 µJ/cm2, a value that is larger than that of the previous GaAs large-aperture antenna.

Fig. 4
Fig. 4

Dependence of the photoconductive current on the applied electric field. Although there was a weak saturation at E > 5 × 105 V/cm, the photoconductive current increased by as much as six times from 1 × 105 V/cm to 1 × 106 V/cm. In addition, given the estimated saturation energy density of our 3 cm × 3 cm CVD diamond antenna, we could obtain a focusing intensity of greater than 200 MW/cm2.

Fig. 5
Fig. 5

Focusing profile of THz radiation with F/2 optics. The spot size of THz radiation was approximately 1.7 mmϕ. This focusability indicated the coherent addition of every element in the array antenna. The solid curve was a fitting curve with the assumption of a rectangular aperture.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ETHz=-Ebσsη0σsη0+1+εr,

Metrics