Abstract

A new technique that enables frequency-resolved cavity ringdown absorption spectra to be obtained over a large optical bandwidth by a single laser shot is described. The technique, ringdown spectral photography (RSP), simultaneously employs two key principles to record the time and frequency response of an optical cavity along orthogonal axes of a CCD array detector. Previously, the principles employed in RSP were demonstrated with narrow-band laser light that was scanned in frequency [Chem. Phys. Lett. 292, 143 (1998)]. Here, the RSP method is demonstrated using single pulses of broadband visible laser light. The ability to obtain broad as well as rotationally resolved spectra over a large bandwidth with high sensitivity is demonstrated.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143–153 (1998).
    [CrossRef]
  2. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997), and references therein.
  3. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  4. A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
    [CrossRef]
  5. J. J. Scherer, K. Aniolek, N. Cernansky, D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107, 6196–6203 (1997).
    [CrossRef]
  6. T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ring-down method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
    [CrossRef]
  7. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
    [CrossRef]
  8. G. P. Miller, C. B. Winstead, “Inductively coupled plasma cavity ringdown spectrometry,” J. Anal. At. Spectrom. 12, 907–912 (1997).
    [CrossRef]
  9. R. Engeln, G. Meijer, “A Fourier-transform cavity ring down spectrometer,” Rev. Sci. Instrum. 67, 2708–2713 (1996).
    [CrossRef]
  10. D. S. Bethune, J. R. Lankard, P. P. Sorokin, “Time-resolved infrared spectral photography,” Opt. Lett. 4, 103–105 (1979).
    [CrossRef] [PubMed]
  11. D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
    [CrossRef]

1998 (1)

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143–153 (1998).
[CrossRef]

1997 (3)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997), and references therein.

J. J. Scherer, K. Aniolek, N. Cernansky, D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107, 6196–6203 (1997).
[CrossRef]

G. P. Miller, C. B. Winstead, “Inductively coupled plasma cavity ringdown spectrometry,” J. Anal. At. Spectrom. 12, 907–912 (1997).
[CrossRef]

1996 (1)

R. Engeln, G. Meijer, “A Fourier-transform cavity ring down spectrometer,” Rev. Sci. Instrum. 67, 2708–2713 (1996).
[CrossRef]

1993 (2)

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ring-down method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

1990 (1)

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1981 (1)

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

1979 (1)

Aniolek, K.

J. J. Scherer, K. Aniolek, N. Cernansky, D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107, 6196–6203 (1997).
[CrossRef]

Avouris, P. H.

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

Bethune, D. S.

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

D. S. Bethune, J. R. Lankard, P. P. Sorokin, “Time-resolved infrared spectral photography,” Opt. Lett. 4, 103–105 (1979).
[CrossRef] [PubMed]

Cernansky, N.

J. J. Scherer, K. Aniolek, N. Cernansky, D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107, 6196–6203 (1997).
[CrossRef]

Cooksey, A. L.

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Engeln, R.

R. Engeln, G. Meijer, “A Fourier-transform cavity ring down spectrometer,” Rev. Sci. Instrum. 67, 2708–2713 (1996).
[CrossRef]

Heath, J.

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Lankard, J. R.

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

D. S. Bethune, J. R. Lankard, P. P. Sorokin, “Time-resolved infrared spectral photography,” Opt. Lett. 4, 103–105 (1979).
[CrossRef] [PubMed]

Lehmann, K. K.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Lin, M. C.

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ring-down method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

Meijer, G.

R. Engeln, G. Meijer, “A Fourier-transform cavity ring down spectrometer,” Rev. Sci. Instrum. 67, 2708–2713 (1996).
[CrossRef]

Miller, G. P.

G. P. Miller, C. B. Winstead, “Inductively coupled plasma cavity ringdown spectrometry,” J. Anal. At. Spectrom. 12, 907–912 (1997).
[CrossRef]

O’Keefe, A.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997), and references therein.

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997), and references therein.

Plecenik, A. M.

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

Rakestraw, D. J.

J. J. Scherer, K. Aniolek, N. Cernansky, D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107, 6196–6203 (1997).
[CrossRef]

Romanini, D.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997), and references therein.

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Schell-Sorokin, A. J.

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

Scherer, J. J.

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143–153 (1998).
[CrossRef]

J. J. Scherer, K. Aniolek, N. Cernansky, D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107, 6196–6203 (1997).
[CrossRef]

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997), and references therein.

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Sheeks, R.

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Sorokin, P. P.

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

D. S. Bethune, J. R. Lankard, P. P. Sorokin, “Time-resolved infrared spectral photography,” Opt. Lett. 4, 103–105 (1979).
[CrossRef] [PubMed]

Winstead, C. B.

G. P. Miller, C. B. Winstead, “Inductively coupled plasma cavity ringdown spectrometry,” J. Anal. At. Spectrom. 12, 907–912 (1997).
[CrossRef]

Yu, T.

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ring-down method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

Chem. Phys. Lett. (2)

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143–153 (1998).
[CrossRef]

A. O’Keefe, J. J. Scherer, A. L. Cooksey, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Chem. Rev. (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997), and references therein.

J. Am. Chem. Soc. (1)

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ring-down method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

J. Anal. At. Spectrom. (1)

G. P. Miller, C. B. Winstead, “Inductively coupled plasma cavity ringdown spectrometry,” J. Anal. At. Spectrom. 12, 907–912 (1997).
[CrossRef]

J. Chem. Phys. (3)

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

J. J. Scherer, K. Aniolek, N. Cernansky, D. J. Rakestraw, “Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107, 6196–6203 (1997).
[CrossRef]

D. S. Bethune, J. R. Lankard, P. P. Sorokin, A. J. Schell-Sorokin, A. M. Plecenik, P. H. Avouris, “Time-resolved infrared study of bimolecular reactions between tert-butyl radicals,” J. Chem. Phys. 75, 2231–2236 (1981).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. Engeln, G. Meijer, “A Fourier-transform cavity ring down spectrometer,” Rev. Sci. Instrum. 67, 2708–2713 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

RSP method. A single ringdown event is simultaneously dispersed in time with a high-speed rotating mirror and in wavelength with a diffraction grating. The wavelength-resolved cavity decay times are recorded with a two-dimensional array detector, from which the absorption spectrum is extracted.

Fig. 2
Fig. 2

Experimental apparatus. Output from either a BBD laser or a narrow-band tunable dye laser is mode matched into the ringdown cavity and detected extracavity at the rear mirror by RSP or CRDS methods. PMT, photomultiplier tube.

Fig. 3
Fig. 3

Single-shot RSP versus a scanned-frequency CRDS spectrum of propane. The intracavity losses extracted from the RSP image are shown for every 20th pixel along the wavelength axis, and the CRDS data are shown at a much finer step size.

Fig. 4
Fig. 4

Decay profile that we extracted from the image shown in Fig. 3 by taking a two pixel-wide slice (in frequency) at 636 nm. The corresponding fit of the data to a single exponential is shown, together with residuals. The deviation from a single exponential character is noted as the signal approaches the noise level of the camera system.

Fig. 5
Fig. 5

Single-shot RSP image obtained in the 690-nm region with oxygen placed in the cavity. Here the rotational structure of the b 1Σ g - X 3Σ g (1,0) system of oxygen is resolved with an instrumental resolution of approximately 1.5 cm-1.

Metrics