Abstract

We present an overview of the calibration of the Sea-viewing Wide Field-of View Sensor (SeaWiFS) from its performance verification at the manufacturer’s facility to the completion of its third year of on-orbit measurements. These calibration procedures have three principal parts: a prelaunch radiometric calibration that is traceable to the National Institute of Standards and Technology; the Transfer-to-Orbit Experiment, a set of measurements that determine changes in the instrument’s calibration from its manufacture to the start of on-orbit operations; and measurements of the sun and the moon to determine radiometric changes on orbit. To our knowledge, SeaWiFS is the only instrument that uses routine lunar measurements to determine changes in its radiometric sensitivity. On the basis of these methods, the overall uncertainty in the SeaWiFS top-of-the-atmosphere radiances is estimated to be 4–5%. We also show the results of comparison campaigns with aircraft- and ground-based measurements, plus the results of an experiment, called the Southern Ocean Band 8 Gain Study. These results are used to check the calibration of the SeaWiFS bands. To date, they have not been used to change the instrument’s prelaunch calibration coefficients. In addition to these procedures, SeaWiFS is a vicariously calibrated instrument for ocean-color measurements. In the vicarious calibration of the SeaWiFS visible bands, the calibration coefficients are modified to force agreement with surface truth measurements from the Marine Optical Buoy, which is moored off the Hawaiian Island of Lanai. This vicarious calibration is described in a companion paper.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
    [CrossRef] [PubMed]
  2. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  3. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  4. R. H. Evans, H. R. Gordon, “Coastal Zone Color Scanner ‘system calibration’: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994).
    [CrossRef]
  5. H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22, 103–126 (1987).
    [CrossRef]
  6. R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
    [CrossRef]
  7. R. A. Barnes, W. L. Barnes, W. E. Esaias, C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, 22, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  8. R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
    [CrossRef]
  9. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
    [CrossRef]
  10. R. A. Barnes, “SeaWiFS data: actual and simulated,” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), from http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat .
  11. B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  12. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  13. R. A. Barnes, R. E. Eplee, “The 1993 SeaWiFS calibration using band-averaged spectral radiances,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 10456640, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 39–47.
  14. E. A. Early, B. C. Johnson, “Calibration and characterization of the GSFC sphere,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 3–17.
  15. B. C. Johnson, J. B. Fowler, C. R. Cromer, The SeaWiFS Transfer Radiometer (SXR), NASA Tech. Memo. 1998-2068921, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1998).
  16. R. A. Barnes, A. W. Holmes, W. E. Esaias, Stray Light in the SeaWiFS Radiometer, NASA Tech. Memo. 10456631, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).
  17. E-n. Yeh, M. Darzi, L. Kumar, “SeaWiFS stray light algorithm,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 24–30.
  18. R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, “SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000).
    [CrossRef]
  19. R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 10456639, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996) pp. 54–61.
  20. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995).
    [CrossRef] [PubMed]
  21. M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
    [CrossRef]
  22. R. A. Barnes, R. E. Eplee, F. S. Patt, “SeaWiFS measurements of the moon,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 311–324 (1998).
    [CrossRef]
  23. R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS after two years on orbit,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 214–227 (1999).
    [CrossRef]
  24. H. H. Kieffer, R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Ocean. Technol. 13, 360–375 (1996).
    [CrossRef]
  25. H. H. Kieffer, J. M. Anderson, “Use of the moon for spacecraft calibration,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 325–336 (1998).
    [CrossRef]
  26. H. H. Kieffer, J. M. Anderson, K. J. Becker, “Radiometric calibration of spacecraft using lunar images,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 193–205 (1999).
    [CrossRef]
  27. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
    [CrossRef]
  28. P. Helfenstein, J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987).
    [CrossRef]
  29. R. E. Eplee, R. A. Barnes, “Lunar data analysis for SeaWiFS calibration,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 17–27.
  30. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
    [CrossRef] [PubMed]
  31. M. Wang, S. W. Bailey, “Correction of the sunglint contamination on the SeaWiFS aerosol optical thickness retrievals,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 64–68.
  32. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution of water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
    [CrossRef]
  33. W. D. Robinson, G. M. Schmidt, C. R. McClain, P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 12–28.
  34. B. D. Schieber, J. K. Firestone, “The generation of CZCS ancillary data sets for simulated SeaWiFS processing,” in Case Studies for SeaWiFS Calibration and Validation, Part 2, NASA Tech. Memo. 10456619, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).
  35. D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
    [CrossRef]
  36. B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).
  37. M. Wang, “The SeaWiFS atmospheric correction algorithm updates,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  38. G. E. Shaw, “Atmospheric turbidity in the polar regions,” J. App. Meterol. 21, 1080–1088 (1982).
    [CrossRef]
  39. A. Herber, L. W. Thomason, V. F. Radionov, U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
    [CrossRef]
  40. W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
    [CrossRef]
  41. R. Green, T. G. Chrien, “High altitude measurements of radiance at high spectral and spatial resolution for SIMBIOS sensor calibration, validation, and intercomparisons,” in SIMBIOS Project 1998 Annual Report, , C. R. McClain, G. S. Fargion, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  42. E. E. Whittington, K. J. Thome, R. A. Barnes, K. A. Canham, “Radiometric calibration of the Sea-viewing Wide Field of View Sensor using ground-reference techniques,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 294–301 (2000).
  43. M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
    [CrossRef]

2001 (2)

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

2000 (3)

1999 (2)

M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

1998 (1)

B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).

1996 (1)

H. H. Kieffer, R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Ocean. Technol. 13, 360–375 (1996).
[CrossRef]

1995 (1)

1994 (1)

R. H. Evans, H. R. Gordon, “Coastal Zone Color Scanner ‘system calibration’: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994).
[CrossRef]

1993 (1)

A. Herber, L. W. Thomason, V. F. Radionov, U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
[CrossRef]

1988 (1)

1987 (2)

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22, 103–126 (1987).
[CrossRef]

P. Helfenstein, J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987).
[CrossRef]

1982 (1)

G. E. Shaw, “Atmospheric turbidity in the polar regions,” J. App. Meterol. 21, 1080–1088 (1982).
[CrossRef]

1980 (1)

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Anderson, F.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Anderson, J. M.

H. H. Kieffer, J. M. Anderson, K. J. Becker, “Radiometric calibration of spacecraft using lunar images,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 193–205 (1999).
[CrossRef]

H. H. Kieffer, J. M. Anderson, “Use of the moon for spacecraft calibration,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 325–336 (1998).
[CrossRef]

Austin, R. W.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Bailey, S. W.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

M. Wang, S. W. Bailey, “Correction of the sunglint contamination on the SeaWiFS aerosol optical thickness retrievals,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 64–68.

Baker, E. T.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Ball, D.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Barnes, R.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Barnes, R. A.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, “SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000).
[CrossRef]

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 10456639, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996) pp. 54–61.

R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
[CrossRef]

R. E. Eplee, R. A. Barnes, “Lunar data analysis for SeaWiFS calibration,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 17–27.

R. A. Barnes, W. L. Barnes, W. E. Esaias, C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, 22, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

E. E. Whittington, K. J. Thome, R. A. Barnes, K. A. Canham, “Radiometric calibration of the Sea-viewing Wide Field of View Sensor using ground-reference techniques,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 294–301 (2000).

R. A. Barnes, “SeaWiFS data: actual and simulated,” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), from http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat .

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

R. A. Barnes, R. E. Eplee, F. S. Patt, “SeaWiFS measurements of the moon,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 311–324 (1998).
[CrossRef]

R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS after two years on orbit,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 214–227 (1999).
[CrossRef]

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

R. A. Barnes, R. E. Eplee, “The 1993 SeaWiFS calibration using band-averaged spectral radiances,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 10456640, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 39–47.

R. A. Barnes, A. W. Holmes, W. E. Esaias, Stray Light in the SeaWiFS Radiometer, NASA Tech. Memo. 10456631, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

Barnes, W.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Barnes, W. L.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

R. A. Barnes, W. L. Barnes, W. E. Esaias, C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, 22, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

Becker, K. J.

H. H. Kieffer, J. M. Anderson, K. J. Becker, “Radiometric calibration of spacecraft using lunar images,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 193–205 (1999).
[CrossRef]

Behrenfield, M. J.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Biggar, S. F.

Brown, J. W.

Caffrey, R. T.

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Canham, K. A.

E. E. Whittington, K. J. Thome, R. A. Barnes, K. A. Canham, “Radiometric calibration of the Sea-viewing Wide Field of View Sensor using ground-reference techniques,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 294–301 (2000).

Chen, B.

B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).

Chrien, T. G.

R. Green, T. G. Chrien, “High altitude measurements of radiance at high spectral and spatial resolution for SIMBIOS sensor calibration, validation, and intercomparisons,” in SIMBIOS Project 1998 Annual Report, , C. R. McClain, G. S. Fargion, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Clark, D. K.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Cromer, C. R.

B. C. Johnson, J. B. Fowler, C. R. Cromer, The SeaWiFS Transfer Radiometer (SXR), NASA Tech. Memo. 1998-2068921, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1998).

Darzi, M.

E-n. Yeh, M. Darzi, L. Kumar, “SeaWiFS stray light algorithm,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 24–30.

Early, E. A.

E. A. Early, B. C. Johnson, “Calibration and characterization of the GSFC sphere,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 3–17.

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

El-Sayed, S. Z.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Endres, D.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Enmark, H. T.

W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
[CrossRef]

Eplee, R. E.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, “SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000).
[CrossRef]

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 10456639, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996) pp. 54–61.

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

R. A. Barnes, R. E. Eplee, “The 1993 SeaWiFS calibration using band-averaged spectral radiances,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 10456640, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 39–47.

R. A. Barnes, R. E. Eplee, F. S. Patt, “SeaWiFS measurements of the moon,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 311–324 (1998).
[CrossRef]

R. E. Eplee, R. A. Barnes, “Lunar data analysis for SeaWiFS calibration,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 17–27.

Esaias, W. E.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

R. A. Barnes, W. L. Barnes, W. E. Esaias, C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, 22, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

R. A. Barnes, A. W. Holmes, W. E. Esaias, Stray Light in the SeaWiFS Radiometer, NASA Tech. Memo. 10456631, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Evans, R. H.

R. H. Evans, H. R. Gordon, “Coastal Zone Color Scanner ‘system calibration’: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994).
[CrossRef]

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

Falkowski, P. G.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Feldman, G. C.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Field, C. B.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Firestone, J. K.

B. D. Schieber, J. K. Firestone, “The generation of CZCS ancillary data sets for simulated SeaWiFS processing,” in Case Studies for SeaWiFS Calibration and Validation, Part 2, NASA Tech. Memo. 10456619, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).

Fowler, J. B.

B. C. Johnson, J. B. Fowler, C. R. Cromer, The SeaWiFS Transfer Radiometer (SXR), NASA Tech. Memo. 1998-2068921, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1998).

Frette, Ø.

B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).

Frouin, R.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Gordon, H. R.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution of water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995).
[CrossRef] [PubMed]

R. H. Evans, H. R. Gordon, “Coastal Zone Color Scanner ‘system calibration’: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994).
[CrossRef]

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22, 103–126 (1987).
[CrossRef]

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Green, R.

R. Green, T. G. Chrien, “High altitude measurements of radiance at high spectral and spatial resolution for SIMBIOS sensor calibration, validation, and intercomparisons,” in SIMBIOS Project 1998 Annual Report, , C. R. McClain, G. S. Fargion, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Guenther, B.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Hapke, B.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
[CrossRef]

Helfenstein, P.

P. Helfenstein, J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987).
[CrossRef]

Herber, A.

A. Herber, L. W. Thomason, V. F. Radionov, U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
[CrossRef]

Holmes, A. W.

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, “SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000).
[CrossRef]

R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
[CrossRef]

R. A. Barnes, A. W. Holmes, W. E. Esaias, Stray Light in the SeaWiFS Radiometer, NASA Tech. Memo. 10456631, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Hovis, W. A.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Johnson, B. C.

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

E. A. Early, B. C. Johnson, “Calibration and characterization of the GSFC sphere,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 3–17.

B. C. Johnson, J. B. Fowler, C. R. Cromer, The SeaWiFS Transfer Radiometer (SXR), NASA Tech. Memo. 1998-2068921, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1998).

Kieffer, H. H.

H. H. Kieffer, R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Ocean. Technol. 13, 360–375 (1996).
[CrossRef]

H. H. Kieffer, J. M. Anderson, “Use of the moon for spacecraft calibration,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 325–336 (1998).
[CrossRef]

H. H. Kieffer, J. M. Anderson, K. J. Becker, “Radiometric calibration of spacecraft using lunar images,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 193–205 (1999).
[CrossRef]

Kolber, D. D.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Kumar, L.

E-n. Yeh, M. Darzi, L. Kumar, “SeaWiFS stray light algorithm,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 24–30.

Leiterer, U.

A. Herber, L. W. Thomason, V. F. Radionov, U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
[CrossRef]

Los, S. O.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Maritorena, S.

McClain, C. R.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

R. A. Barnes, W. L. Barnes, W. E. Esaias, C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, 22, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

W. D. Robinson, G. M. Schmidt, C. R. McClain, P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 12–28.

R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS after two years on orbit,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 214–227 (1999).
[CrossRef]

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Mitchell, B. G.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

Moore, K. D.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution of water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

Mueller, J. L.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Patt, F. S.

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

R. A. Barnes, R. E. Eplee, F. S. Patt, “SeaWiFS measurements of the moon,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 311–324 (1998).
[CrossRef]

Pollack, N. H.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Porter, W. M.

W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
[CrossRef]

Radionov, V. F.

A. Herber, L. W. Thomason, V. F. Radionov, U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
[CrossRef]

Randerson, J. T.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Robinson, W.

Robinson, W. D.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

W. D. Robinson, G. M. Schmidt, C. R. McClain, P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 12–28.

Schieber, B. D.

B. D. Schieber, J. K. Firestone, “The generation of CZCS ancillary data sets for simulated SeaWiFS processing,” in Case Studies for SeaWiFS Calibration and Validation, Part 2, NASA Tech. Memo. 10456619, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).

Schmidt, G. M.

W. D. Robinson, G. M. Schmidt, C. R. McClain, P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 12–28.

Shaw, G. E.

G. E. Shaw, “Atmospheric turbidity in the polar regions,” J. App. Meterol. 21, 1080–1088 (1982).
[CrossRef]

Siegel, D. A.

Slater, P. N.

Stamnes, J. J.

B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).

Stamnes, K.

B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).

Sturm, B.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Svitek, T.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

Thomason, L. W.

A. Herber, L. W. Thomason, V. F. Radionov, U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
[CrossRef]

Thome, K. J.

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, “SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000).
[CrossRef]

E. E. Whittington, K. J. Thome, R. A. Barnes, K. A. Canham, “Radiometric calibration of the Sea-viewing Wide Field of View Sensor using ground-reference techniques,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 294–301 (2000).

Tucker, C. J.

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Veverka, J.

P. Helfenstein, J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987).
[CrossRef]

Voss, K. J.

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution of water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

Wang, M.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
[CrossRef]

M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

M. Wang, S. W. Bailey, “Correction of the sunglint contamination on the SeaWiFS aerosol optical thickness retrievals,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 64–68.

M. Wang, “The SeaWiFS atmospheric correction algorithm updates,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

Werdell, P. J.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001).
[CrossRef]

W. D. Robinson, G. M. Schmidt, C. R. McClain, P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 12–28.

Whittington, E. E.

E. E. Whittington, K. J. Thome, R. A. Barnes, K. A. Canham, “Radiometric calibration of the Sea-viewing Wide Field of View Sensor using ground-reference techniques,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 294–301 (2000).

Wildey, R. L.

H. H. Kieffer, R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Ocean. Technol. 13, 360–375 (1996).
[CrossRef]

Wilson, W. H.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Wrigley, R. C.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Yan, B.

B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).

Yeh, E-n.

E-n. Yeh, M. Darzi, L. Kumar, “SeaWiFS stray light algorithm,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 24–30.

Yentsch, C. S.

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

Zalewski, E. F.

Appl. Opt. (6)

Icarus (1)

P. Helfenstein, J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987).
[CrossRef]

J. Adv. Mar. Sci. Tech. Soc. (1)

B. Chen, K. Stamnes, B. Yan, Ø. Frette, J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on the atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).

J. App. Meterol. (1)

G. E. Shaw, “Atmospheric turbidity in the polar regions,” J. App. Meterol. 21, 1080–1088 (1982).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

H. H. Kieffer, R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Ocean. Technol. 13, 360–375 (1996).
[CrossRef]

J. Geophys. Res. (3)

A. Herber, L. W. Thomason, V. F. Radionov, U. Leiterer, “Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic,” J. Geophys. Res. 98, 18441–18447 (1993).
[CrossRef]

K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution of water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

R. H. Evans, H. R. Gordon, “Coastal Zone Color Scanner ‘system calibration’: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994).
[CrossRef]

Remote Sens. Environ. (2)

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22, 103–126 (1987).
[CrossRef]

M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

Science (2)

W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
[CrossRef] [PubMed]

M. J. Behrenfield, J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, N. H. Pollack, “Biospheric primary production during an ENSO transition,” Science 291, 2594–2597 (2001).
[CrossRef]

Other (26)

M. Wang, S. W. Bailey, “Correction of the sunglint contamination on the SeaWiFS aerosol optical thickness retrievals,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 64–68.

W. D. Robinson, G. M. Schmidt, C. R. McClain, P. J. Werdell, “Changes made in the operational SeaWiFS processing,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 2, NASA Tech. Memo. 2000-20689210, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 12–28.

B. D. Schieber, J. K. Firestone, “The generation of CZCS ancillary data sets for simulated SeaWiFS processing,” in Case Studies for SeaWiFS Calibration and Validation, Part 2, NASA Tech. Memo. 10456619, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).

W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
[CrossRef]

R. Green, T. G. Chrien, “High altitude measurements of radiance at high spectral and spatial resolution for SIMBIOS sensor calibration, validation, and intercomparisons,” in SIMBIOS Project 1998 Annual Report, , C. R. McClain, G. S. Fargion, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

E. E. Whittington, K. J. Thome, R. A. Barnes, K. A. Canham, “Radiometric calibration of the Sea-viewing Wide Field of View Sensor using ground-reference techniques,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 294–301 (2000).

H. H. Kieffer, J. M. Anderson, “Use of the moon for spacecraft calibration,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 325–336 (1998).
[CrossRef]

H. H. Kieffer, J. M. Anderson, K. J. Becker, “Radiometric calibration of spacecraft using lunar images,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 193–205 (1999).
[CrossRef]

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
[CrossRef]

M. Wang, “The SeaWiFS atmospheric correction algorithm updates,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).

R. E. Eplee, R. A. Barnes, “Lunar data analysis for SeaWiFS calibration,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-2068929, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000) pp. 17–27.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 1045663, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).

R. A. Barnes, R. E. Eplee, F. S. Patt, “SeaWiFS measurements of the moon,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 311–324 (1998).
[CrossRef]

R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS after two years on orbit,” in Sensors, Systems, and Next Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 214–227 (1999).
[CrossRef]

R. A. Barnes, W. L. Barnes, W. E. Esaias, C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, 22, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
[CrossRef]

R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 10456639, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996) pp. 54–61.

R. A. Barnes, “SeaWiFS data: actual and simulated,” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), from http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat .

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-2068924, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 10456623, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

R. A. Barnes, R. E. Eplee, “The 1993 SeaWiFS calibration using band-averaged spectral radiances,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 10456640, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 39–47.

E. A. Early, B. C. Johnson, “Calibration and characterization of the GSFC sphere,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 3–17.

B. C. Johnson, J. B. Fowler, C. R. Cromer, The SeaWiFS Transfer Radiometer (SXR), NASA Tech. Memo. 1998-2068921, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1998).

R. A. Barnes, A. W. Holmes, W. E. Esaias, Stray Light in the SeaWiFS Radiometer, NASA Tech. Memo. 10456631, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

E-n. Yeh, M. Darzi, L. Kumar, “SeaWiFS stray light algorithm,” in Case Studies for SeaWiFS Calibration and Validation, Part 4, NASA Tech. Memo. 10456641, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997) pp. 24–30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

SeaWiFS scanner assembly. The scanner mounts to the spacecraft with use of the four mounting points at the top of the figure.

Fig. 2
Fig. 2

SeaWiFS calibration coefficients. The coefficients are given as sensitivities, with units of spectral radiance per digital number. (a) Calibration for the individual channels. The low-sensitivity channels were placed on the outside edges of the focal planes to help reduce the effects of stray light in the instrument.16 (b) Combined calibration coefficients for each band. The bands are presented in terms of their center wavelengths. Below the knee, none of the channels in the band are in digital saturation. Above the knee, all of the high-sensitivity channels are in digital saturation, each with an output of 1023 DN.

Fig. 3
Fig. 3

The bilinear calibration curve for SeaWiFS band 1. The signals are the net outputs from the band (after the zero offset has been removed). (a) Measurements over the entire dynamic range of the band. The spectral radiances for ocean measurements occur below the knee and for land occur above the knee. The knee is actually three knees in one. (b) Measurements in the region of the three knees. Each knee occurs when one of the high-sensitivity channels goes into digital saturation (1023 DN).

Fig. 4
Fig. 4

Atmospheric transmittances during the ground portion of the transfer-to-orbit experiment. The symbols give the measurements from the sun photometer. The curve gives the derived atmospheric transmittance spectrum.

Fig. 5
Fig. 5

Results of the transfer-to-orbit experiment for the eight SeaWiFS bands. These are the differences of the on-orbit measurements of the sun from those predicted from the ground measurements prelaunch. At the 3% level, there is no sign of change in the radiometric sensitivity of SeaWiFS from its manufacture to the start of on-orbit operations.

Fig. 6
Fig. 6

Lunar-measurement results for SeaWiFS bands 1 through 6. The integrated disk radiances are normalized to unity for the first lunar measurement (on 4 November 1997). For the SeaWiFS lunar analysis, this is called the first normalization. The time series for each band has been fitted to a straight line. Although the slopes of the linear regressions differ slightly from band to band, there is a pattern in the results that repeats from measurement to measurement.

Fig. 7
Fig. 7

Lunar measurement results for SeaWiFS bands 1 through 6. This is a compilation of the values in the panels of Fig. 5, without the linear regressions. Instead, there is a line that connects the average of the values for band 3 and band 4 for each lunar measurement. There is a spread over time in the results, with the values for bands 1 and 6 the lowest at day 930, and the values for bands 3 and 4 the highest. We know of no mechanism that improves the radiometric sensitivity of bands 3 and 4 over time, so we have assumed that the radiometric sensitivity of these bands has decreased the least (that is, not at all). As a result, we have normalized the values for all of the bands to the average of bands 3 and 4 for each lunar measurement (see Fig. 8). For the SeaWiFS lunar analysis, this is called the second normalization.

Fig. 8
Fig. 8

Lunar measurement results for SeaWiFS bands 7 and 8. As with Fig. 5, the integrated disk radiances are normalized to unity for the first lunar measurements on 4 November 1997. The time series for each band has also been fitted to a straight line. The vertical scale for this figure is twice that for Figs. 5 and 6, so the measurement-to-measurement patterns shown here for these bands appear smaller than for bands 1–6.

Fig. 9
Fig. 9

Changes in the radiometric sensitivity of SeaWiFS as determined from lunar measurements. These results have been normalized to the average of bands 3 and 4 for each measurement. The fitted curves shown here give the on-orbit changes in the instrument for use in Eq. (1). The curves are combinations of straight lines and one or more quadratic functions.

Fig. 10
Fig. 10

Calculation of the residual temperature dependence for SeaWiFS band 8. (a) Lunar measurements for SeaWiFS band 8, plotted with a single exponential curve. The curve flattens out at a value of 0.885. (b) Residuals of the data points in panel (a) about the fitted curve. These residuals are cyclic with a period of one year. (c) Temperatures of the band 7/8 focal plane for the set of lunar measurements. The patterns of panels (b) and (c) are in phase, indicating an overcorrection for the focal-plane temperature in the instrument model. (d) Residuals about the fitted curve plotted versus focal-plane temperature. The slope in this panel gives the excess in the value for the k 3 coefficient for band 8. This is the amount that the coefficient must be reduced to minimize the oscillation in panel (b).

Fig. 11
Fig. 11

Changes in the lunar measurements for bands 7 and 8. The changes derive from differences in the focal-plane temperature correction factors (k 3). The original k 3’s come from Table 10 of Barnes et al.12 The revised k 3’s come from the procedure summarized in Fig. 6. (a) Lunar measurements from band 7 with use of the original value for k 3. (b) Lunar measurements from band 7 with use of the revised values for k 3. The fitted curve in this panel is slightly different from that in panel 7(a). (c) Lunar measurements from band 8 with use of the original value for k 3. (d) Lunar measurements from band 8 with use of the revised values for k 3. The fitted curve in this panel is slightly different from that in panel 7(c).

Fig. 12
Fig. 12

Radiances from the Southern Ocean study. For the total radiances, the Rayleigh radiances, and the aerosol radiances, the results have been collected into 0.01 mW cm-2 sr-1 µm-1 bins. For the whitecap radiances, the bins are 100 times smaller. In addition to showing the distributions, the results have been summed to give cumulative distributions with maximum values of unity. The aerosol radiances have been calculated from the others with use of Eq. (17).

Fig. 13
Fig. 13

Results of the Southern Ocean study. The figure gives the ratios of the aerosol radiances to the total radiances measured by SeaWiFS, calculated by use of Eq. (18). The bin with ratios from 0.05 to 0.06 contains about one-tenth of the total distribution. These are the minimum aerosol-radiance ratios for this study. If it is assumed that these minimum ratios come from measurements of an aerosol-free atmosphere, where the aerosol radiance is zero, then the radiances measured by SeaWiFS are too large by 5–6%. For the Southern Ocean study, this is the upper limit for the miscalibration of band 8.

Fig. 14
Fig. 14

Aerosol optical thickness measurements at McMurdo Station, Antarctica. For aerosol optical thicknesses of 0.02 or less, the values are at or below the minimum resolution of the instrument. They cannot be distinguished from measurements of an aerosol-free atmosphere.

Tables (2)

Tables Icon

Table 1 SeaWiFS Center Wavelengtha

Tables Icon

Table 2 Results of the Transfer-to-Orbit Experimenta

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

LTλ=DN-DN0k2gαt0β+γt-t0+δt-t02-1,
k2g=LBDN-DN0=λ1λ2 LλRλdλλ1λ2 RλdλDN-DN0,
1k2g=141k2g,1+1k2g,2+1k2g,3+1k2g,4,
FλϕI, θI=LλEλ cosθI,
Eλ=ES,λD2,
Lλ=FλϕI, θIES,λD2 cosθI.
DN-DN0=cosθIk2gD2λ1λ2 FλϕI, θIES,λRλdλλ1λ2 Rλdλ.
DN-DN0B=cosθIBk2gBDB2λ=3801150 FλϕI, θIES,λRλΔλλ=3801150 RλΔλ,
DN-DN0A=cosθIAk2gADA2λ=3801150 FλϕI, θIES,λTλRλΔλλ=3801150 RλΔλ,
DN-DN0B=k2gAk2gBDA2DB2×λ=3801150 FλϕI, θIES,λRλΔλλ=3801150 FλϕI, θIES,λTλRλΔλ×DN-DN0A.
λ=3801150 FλϕI, θIES,λTλRλΔλλ=3801150 RλΔλλ=3801150 FλϕI, θIRλΔλλ=3801150 RλΔλλ=3801150 ES,λRλΔλλ=3801150 RλΔλ×λ=3801150 T, RλΔλλ=3801150 RλΔλ.
λ=3801150 FλϕI, θIES,λRλΔλλ=3801150 FλϕI, θIES,λTλRλΔλλ=3801150 TλRλΔλλ=3801150 RλΔλ-1,
LT=DN-DN0[k2gαt0(1-β1-γ exp-δt-t0)-1],
TCORR=1+k3T-TREF,
LTλ=LRλ+LAλ+LRAλ+TλLGλ+tλLWCλ+tλLWλ,
LTλ-LRλ-tλLWCλ=LAλ+LRAλ,
LT865-LR865-t865LWC865=LA865+LRA865,
RL=LA865+LRA865LT865,

Metrics