Abstract

A unique scheme has been applied for sensitive remote detection of 2,4,6-trinitrotoluene (TNT) vapor trace amounts at atmospheric pressure and 24 °C. The detection concept is based on a single laser beam inducing a tandem process: photodissociation of TNT vapor followed by highly selective detection of its photofragments vibrationally excited NO, utilizing laser-induced fluorescence with the A 2Σ+(v′ = 0) ← X 2Π(v″ = 2) transition. A detection sensitivity of at least 8 parts in 109 of TNT vapor with a signal-to-noise ratio of approximately 10 has been experimentally verified for an unfocused ∼5-mJ laser beam, measured at a distance of ∼15 cm from the TNT sample.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Steinfeld, J. Wormhoudt, “Explosive detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998).
    [CrossRef]
  2. K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
    [CrossRef]
  3. P. Kolla, “Detecting hidden explosives,” Anal. Chem. 67, 184–189 (1995).
    [CrossRef]
  4. J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosives in soils,” Appl. Opt. 35, 3992–3997 (1996).
    [CrossRef] [PubMed]
  5. F. J. Effenberger, A. G. Mercado, “Explosive vapor detection via mid-infrared laser spectroscopy,” in Electro-Optical Technology for Remote Chemical Detection and Identification III, M. Fallahi, E. Howden, eds., Proc. SPIE3383, 104–112 (1998).
    [CrossRef]
  6. I. R. Lewis, N. W. Daniel, P. R. Griffiths, “Interpretation of Raman spectra of nitro-containing explosive materials. Part I: Group frequency and structural class membership,” Appl. Spectrosc. 51, 1854–1867 (1997).
    [CrossRef]
  7. B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).
  8. D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
    [CrossRef] [PubMed]
  9. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Y. Yueh, D. L. Monts, “Development of a photofragmentation–laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999).
    [CrossRef]
  10. R. L. Pastel, R. C. Sausa, “Spectral differentiation of trace concentrations of NO2 from NO by laser photofragmentation with fragment ionization at 266 and 452 nm: quantitative analysis of NO–NO2 mixtures,” Appl. Opt. 39, 2487–2495 (2000).
    [CrossRef]
  11. R. L. Pastel, R. C. Sausa, “Detection of NO and NO2 by (2+2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm,” Appl. Opt. 35, 4046–4052 (1996).
    [CrossRef] [PubMed]
  12. V. Swayambunathan, R. C. Sausa, G. Singh, “Laser photofragmentation/fragment detection and pyrolysis/laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
    [CrossRef]
  13. N. Daugey, J. Shu, I. Bar, S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v″ = 0–3),” Appl. Spectrosc. 53, 57–64 (1999).
  14. J. Shu, I. Bar, S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710 (1999).
    [CrossRef]
  15. J. Shu, I. Bar, S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
    [CrossRef]
  16. J. Shu, I. Bar, S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665–672 (2000).
    [CrossRef]
  17. R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
    [CrossRef]
  18. D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993).
    [CrossRef]
  19. R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1984).
  20. A. D. Usachev, T. S. Miller, J. P. Singh, F.-U. Yueh, P.-R. Jang, D. L. Monts, “Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region,” Appl. Spectrosc. 55, 125–129 (2001).
    [CrossRef]
  21. J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+–X2Π and D2Σ+–X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
    [CrossRef]
  22. J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532.
    [CrossRef]
  23. T. A. Griffy, “A model of explosive vapor concentration II,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 503–511.
    [CrossRef]
  24. E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).
  25. R. A. Crane, “Laser optoacoustic absorption spectra for various explosive vapors,” Appl. Opt. 17, 2097–2102 (1978).
    [CrossRef] [PubMed]

2001 (1)

2000 (3)

J. Shu, I. Bar, S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

R. L. Pastel, R. C. Sausa, “Spectral differentiation of trace concentrations of NO2 from NO by laser photofragmentation with fragment ionization at 266 and 452 nm: quantitative analysis of NO–NO2 mixtures,” Appl. Opt. 39, 2487–2495 (2000).
[CrossRef]

1999 (5)

1998 (1)

J. I. Steinfeld, J. Wormhoudt, “Explosive detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998).
[CrossRef]

1997 (1)

1996 (3)

1995 (3)

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
[CrossRef]

P. Kolla, “Detecting hidden explosives,” Anal. Chem. 67, 184–189 (1995).
[CrossRef]

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

1993 (1)

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993).
[CrossRef]

1992 (1)

E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).

1978 (1)

Bar, I.

J. Shu, I. Bar, S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

N. Daugey, J. Shu, I. Bar, S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v″ = 0–3),” Appl. Spectrosc. 53, 57–64 (1999).

J. Shu, I. Bar, S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710 (1999).
[CrossRef]

Bartz, J. A.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993).
[CrossRef]

Bender, E.

E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).

Blackwood, L. G.

J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532.
[CrossRef]

Boudreaux, G. M.

Cespedes, E. R.

Crane, R. A.

Crim, F. F.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993).
[CrossRef]

Crosley, D. R.

J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+–X2Π and D2Σ+–X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

Daniel, N. W.

Dasari, R. R.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Daugey, N.

Davies, J. P.

J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532.
[CrossRef]

Davis, S. G.

J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532.
[CrossRef]

Davis, W. M.

Effenberger, F. J.

F. J. Effenberger, A. G. Mercado, “Explosive vapor detection via mid-infrared laser spectroscopy,” in Electro-Optical Technology for Remote Chemical Detection and Identification III, M. Fallahi, E. Howden, eds., Proc. SPIE3383, 104–112 (1998).
[CrossRef]

Feld, M. S.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Field, R. W.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Galloway, D. B.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993).
[CrossRef]

Gilbert, B. D.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Goodrich, L. D.

J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532.
[CrossRef]

Griffiths, P. R.

Griffy, T. A.

T. A. Griffy, “A model of explosive vapor concentration II,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 503–511.
[CrossRef]

Hogan, A.

E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).

Huey, L. G.

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993).
[CrossRef]

Jang, P.-R.

Janni, J.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Kebabian, P. L.

Kneipp, K.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Kolb, C. E.

Kolla, P.

P. Kolla, “Detecting hidden explosives,” Anal. Chem. 67, 184–189 (1995).
[CrossRef]

Kunefke, A. J.

Larson, R. A.

J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532.
[CrossRef]

Ledingham, K. W. D.

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
[CrossRef]

Leggett, D.

E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).

Lewis, I. R.

Luque, J.

J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+–X2Π and D2Σ+–X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

MacDonald, S.

E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).

McManus, J. B.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1984).

Mercado, A. G.

F. J. Effenberger, A. G. Mercado, “Explosive vapor detection via mid-infrared laser spectroscopy,” in Electro-Optical Technology for Remote Chemical Detection and Identification III, M. Fallahi, E. Howden, eds., Proc. SPIE3383, 104–112 (1998).
[CrossRef]

Miller, T. S.

Miskolczy, G.

E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).

Monts, D. L.

Moss, D.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Pastel, R. L.

Rosenwaks, S.

J. Shu, I. Bar, S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710 (1999).
[CrossRef]

N. Daugey, J. Shu, I. Bar, S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v″ = 0–3),” Appl. Spectrosc. 53, 57–64 (1999).

Sausa, R. C.

Shorter, J. H.

Shu, J.

J. Shu, I. Bar, S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710 (1999).
[CrossRef]

N. Daugey, J. Shu, I. Bar, S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v″ = 0–3),” Appl. Spectrosc. 53, 57–64 (1999).

Singh, G.

Singh, J. P.

Steinfeld, J. I.

J. I. Steinfeld, J. Wormhoudt, “Explosive detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998).
[CrossRef]

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Swayambunathan, V.

Usachev, A. D.

Wang, Y.

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

Wormhoudt, J.

Wu, D.

Yueh, F. Y.

Yueh, F.-U.

Zahniser, M. S.

Zhang, R.

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

Anal. Chem. (1)

P. Kolla, “Detecting hidden explosives,” Anal. Chem. 67, 184–189 (1995).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

J. I. Steinfeld, J. Wormhoudt, “Explosive detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998).
[CrossRef]

Appl. Opt. (8)

R. A. Crane, “Laser optoacoustic absorption spectra for various explosive vapors,” Appl. Opt. 17, 2097–2102 (1978).
[CrossRef] [PubMed]

G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Y. Yueh, D. L. Monts, “Development of a photofragmentation–laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38, 4705–4710 (1999).
[CrossRef]

J. Wormhoudt, J. H. Shorter, J. B. McManus, P. L. Kebabian, M. S. Zahniser, W. M. Davis, E. R. Cespedes, C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosives in soils,” Appl. Opt. 35, 3992–3997 (1996).
[CrossRef] [PubMed]

D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
[CrossRef] [PubMed]

R. L. Pastel, R. C. Sausa, “Detection of NO and NO2 by (2+2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm,” Appl. Opt. 35, 4046–4052 (1996).
[CrossRef] [PubMed]

V. Swayambunathan, R. C. Sausa, G. Singh, “Laser photofragmentation/fragment detection and pyrolysis/laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
[CrossRef]

R. L. Pastel, R. C. Sausa, “Spectral differentiation of trace concentrations of NO2 from NO by laser photofragmentation with fragment ionization at 266 and 452 nm: quantitative analysis of NO–NO2 mixtures,” Appl. Opt. 39, 2487–2495 (2000).
[CrossRef]

Appl. Phys. B (2)

J. Shu, I. Bar, S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70, 621–625 (2000).
[CrossRef]

J. Shu, I. Bar, S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665–672 (2000).
[CrossRef]

Appl. Spectrosc. (3)

J. Chem. Phys. (3)

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

D. B. Galloway, J. A. Bartz, L. G. Huey, F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 99, 2107–2114 (1993).
[CrossRef]

J. Luque, D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+–X2Π and D2Σ+–X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

J. Forensic Sci. (1)

E. Bender, A. Hogan, D. Leggett, G. Miskolczy, S. MacDonald, “Surface contamination by TNT,” J. Forensic Sci. 37, 1673–1678 (1992).

Phys. Scr. (1)

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
[CrossRef]

Other (5)

F. J. Effenberger, A. G. Mercado, “Explosive vapor detection via mid-infrared laser spectroscopy,” in Electro-Optical Technology for Remote Chemical Detection and Identification III, M. Fallahi, E. Howden, eds., Proc. SPIE3383, 104–112 (1998).
[CrossRef]

B. D. Gilbert, J. Janni, D. Moss, R. W. Field, J. I. Steinfeld, K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, “Spectroscopic detection methods for explosive molecules and their fragmentations,” in Proceedings of the Fifth International Symposium on the Analysis and Detection of Explosives, C. A. Midkiff, ed. (Bureau of Alcohol, Tobacco, and Firearms Washington, D.C., 1995).

R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1984).

J. P. Davies, L. G. Blackwood, S. G. Davis, L. D. Goodrich, R. A. Larson, “Design and calibration of pulsed vapor generators for TNT RDX and PETN,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 513–532.
[CrossRef]

T. A. Griffy, “A model of explosive vapor concentration II,” in Advances in Analysis and Detection of Explosives, J. Yinon, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 503–511.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ground-state and first excited-state electronic levels of NO that describe the relevant detection scheme by LIF.

Fig. 2
Fig. 2

Schematic of the experimental setup for TNT vapor detection in ambient conditions. THG, third-harmonic generation; SHG, second-harmonic generation; BD, beam dump.

Fig. 3
Fig. 3

Part of the A 2Σ+(v′ = 0) ← X 2Π(v″ = 2) transition of NO that results from the photodissociation of NB in vacuum.

Fig. 4
Fig. 4

NO A 2Σ+(v′ = 0) ← X 2Π(v″ = 2) transition bandhead, which is a magnified view of the bandhead in Fig. 3.

Fig. 5
Fig. 5

NO spectra resulting from TNT photodissociation at atmospheric pressure for different vapor pressures (temperatures). The background was taken when the crucible temperature was 24 °C.

Metrics