Abstract

I report on the measurement of threshold energy fluence for optical limiting of nanosecond and microsecond pulses in a high-performance carbon suspension known as Defence Research Establishment Valcartier carbon black suspension (CBS)-100. Thresholds as low as 24-mJ/cm2 (nanosecond regime) and 100-mJ/cm2 (microsecond regime) have been obtained. The measurement technique, based on an f/20 optical system and a small analysis aperture, has been tested by measurement of reverse saturable absorber materials and other carbon suspensions whose properties can be found in the technical literature. A factor of merit has emerged from these measurements that could be used to order by limiting performance the different types of carbon suspension. In this ordering, CBS-100 appears as the best choice in the set of suspensions tested for short and long pulses.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlinear Opt. 21, 413–422 (1999).
  2. D. Vincent, “Optical limiting with carbon suspensions at selected wavelengths and pulse lengths,” J. Nonlinear Opt. Phys. Mater. 9, 243–259 (2000).
  3. D. Vincent, P. Mathieu, “Trois modes d’opération d’un laser à tige d’alexandrite: impulsions laser de 0.1, 1 et 100 µs,” (Defence Research Establishment Valcartier, Val Belair, Canada, 1999).
  4. D. J. Hagan, T. Xia, A. A. Said, E. W. Van Stryland, “Tandem limiter optimization,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 179–190 (1994).
    [CrossRef]
  5. K. J. McEwan, P. K. Milsom, D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
    [CrossRef]
  6. B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
    [CrossRef]
  7. D. B. James, K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–389 (1999).
  8. K. M. Nashold, D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  9. K. Mansour, M. J. Soileau, E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  10. C. Li, L. Zhang, R. Wang, Y. Song, Y. Wang, “Dynamics of reverse saturable absorption and all-optical switching in C60,” J. Opt. Soc. Am. B 11, 1356–1360 (1994).
    [CrossRef]
  11. D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, T. Pottenger, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993).
    [CrossRef]
  12. L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
    [CrossRef]
  13. M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).
  14. Calculated by Luc Bissonnette at DREV from the particle distribution measured with a laser particle sizer and by use of the BHMIE program found in C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).
  15. The Concise Oxford Dictionary of Current English (Clarendon, Oxford, 1990), p. 451.

2000 (1)

D. Vincent, “Optical limiting with carbon suspensions at selected wavelengths and pulse lengths,” J. Nonlinear Opt. Phys. Mater. 9, 243–259 (2000).

1999 (2)

D. B. James, K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–389 (1999).

D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlinear Opt. 21, 413–422 (1999).

1995 (1)

1994 (1)

1993 (1)

1992 (2)

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

K. Mansour, M. J. Soileau, E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
[CrossRef]

1984 (1)

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

Bard, A. J.

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

Bohren, C. F.

Calculated by Luc Bissonnette at DREV from the particle distribution measured with a laser particle sizer and by use of the BHMIE program found in C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

Boilot, J.-P.

M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).

Brandelik, D. M.

Brant, M. C.

Brun, A.

M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).

Brunel, M.

M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).

Canva, M.

M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).

Chaput, F.

M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).

Dininny, D. R.

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

Fleitz, P. A.

Hagan, D. J.

D. J. Hagan, T. Xia, A. A. Said, E. W. Van Stryland, “Tandem limiter optimization,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 179–190 (1994).
[CrossRef]

Huffman, D. R.

Calculated by Luc Bissonnette at DREV from the particle distribution measured with a laser particle sizer and by use of the BHMIE program found in C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

James, D. B.

D. B. James, K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–389 (1999).

K. J. McEwan, P. K. Milsom, D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

Kenney, M. E.

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

Kost, A.

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

Li, C.

Malier, L.

M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).

Mansour, K.

Mathieu, P.

D. Vincent, P. Mathieu, “Trois modes d’opération d’un laser à tige d’alexandrite: impulsions laser de 0.1, 1 et 100 µs,” (Defence Research Establishment Valcartier, Val Belair, Canada, 1999).

McEwan, K. J.

D. B. James, K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–389 (1999).

K. J. McEwan, P. K. Milsom, D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

McLean, D. G.

Milsom, P. K.

K. J. McEwan, P. K. Milsom, D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

Nagasubramanian, G.

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

Nashold, K. M.

Pottenger, T.

Said, A. A.

D. J. Hagan, T. Xia, A. A. Said, E. W. Van Stryland, “Tandem limiter optimization,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 179–190 (1994).
[CrossRef]

Schechtman, L. A.

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

Soileau, M. J.

Song, Y.

Sutherland, R. L.

Tutt, L. W.

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

Van Stryland, E. W.

K. Mansour, M. J. Soileau, E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
[CrossRef]

D. J. Hagan, T. Xia, A. A. Said, E. W. Van Stryland, “Tandem limiter optimization,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 179–190 (1994).
[CrossRef]

Vincent, D.

D. Vincent, “Optical limiting with carbon suspensions at selected wavelengths and pulse lengths,” J. Nonlinear Opt. Phys. Mater. 9, 243–259 (2000).

D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlinear Opt. 21, 413–422 (1999).

D. Vincent, P. Mathieu, “Trois modes d’opération d’un laser à tige d’alexandrite: impulsions laser de 0.1, 1 et 100 µs,” (Defence Research Establishment Valcartier, Val Belair, Canada, 1999).

Walter, D. P.

Wang, R.

Wang, Y.

Wheeler, B. L.

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

Xia, T.

D. J. Hagan, T. Xia, A. A. Said, E. W. Van Stryland, “Tandem limiter optimization,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 179–190 (1994).
[CrossRef]

Zhang, L.

J. Am. Chem. Soc. (1)

B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, D. R. Dininny, M. E. Kenney, “A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence,” J. Am. Chem. Soc. 106, 7404–7410 (1984).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

D. Vincent, “Optical limiting with carbon suspensions at selected wavelengths and pulse lengths,” J. Nonlinear Opt. Phys. Mater. 9, 243–259 (2000).

J. Opt. Soc. Am. B (3)

Nature (London) (1)

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

Nonlinear Opt. (2)

D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlinear Opt. 21, 413–422 (1999).

D. B. James, K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–389 (1999).

Opt. Lett. (1)

Other (6)

M. Brunel, M. Canva, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, “Doped gels for optical limiting applications,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisan, eds., Mater. Res. Soc. Symp. Proc.374, 281–286 (1995).

Calculated by Luc Bissonnette at DREV from the particle distribution measured with a laser particle sizer and by use of the BHMIE program found in C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

The Concise Oxford Dictionary of Current English (Clarendon, Oxford, 1990), p. 451.

D. Vincent, P. Mathieu, “Trois modes d’opération d’un laser à tige d’alexandrite: impulsions laser de 0.1, 1 et 100 µs,” (Defence Research Establishment Valcartier, Val Belair, Canada, 1999).

D. J. Hagan, T. Xia, A. A. Said, E. W. Van Stryland, “Tandem limiter optimization,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 179–190 (1994).
[CrossRef]

K. J. McEwan, P. K. Milsom, D. B. James, “Nonlinear optical effects in carbon suspensions,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 42–52 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Measurement system: LLTV, a low-level TV that allows for the observation of particle movement in the cell illuminated by projector P, with the light off during nonlinear transmission measurements; LBA, laser beam analyzer with a CCD camera which allows for observation of the laser spot when the angled mirror is in position; GPIB, general-purpose interface bus. The output pulse can be seen on an oscilloscope and the data are collected by a dedicated computer.

Fig. 2
Fig. 2

Spot profiles and aperture position in the analysis plane; the photographs show that the constant fluence contours in the spot are circular.

Fig. 3
Fig. 3

Image A′ of analysis aperture A.

Fig. 4
Fig. 4

Curve fit for CBS in ethanol.

Fig. 5
Fig. 5

Curve fit for SiNc in polystyrene.

Fig. 6
Fig. 6

Curve fit for SiNc in chloroform.

Fig. 7
Fig. 7

Laser spots in the analysis plane when the focus of L1 is in the cell and out of the cell. The change in measured energy is much larger through the aperture than in the full spot.

Fig. 8
Fig. 8

Threshold determination in a sample of CBS-100 (fine) for short pulses: MMJ fit.

Fig. 9
Fig. 9

Threshold determination in a sample of CBS-100 (fine) for short pulses: MMJ and NL fits.

Fig. 10
Fig. 10

Threshold determination in a sample of CBS-100 (fine) for short pulses: NL fit.

Fig. 11
Fig. 11

Threshold determination in a sample of CBS-100 (flocs) for short pulses: MMJ fit.

Fig. 12
Fig. 12

Threshold determination in a sample of CBS-100 (fine) for long pulses: MMJ fit.

Fig. 13
Fig. 13

Threshold determination in a sample of CBS-100 (fine) for long pulses: MMJ and NL fits.

Fig. 14
Fig. 14

Threshold determination in a sample of CBS-100 (fine) for long pulses: NL fit.

Fig. 15
Fig. 15

Threshold determination in a sample of CBS-100 (flocs) for long pulses: MMJ fit.

Tables (4)

Tables Icon

Table 1 Comparison with Published Values at 532 nm and 13 ns

Tables Icon

Table 2 Values of Ft and α E 0 in CBS for 13-ns Pulses

Tables Icon

Table 3 Values of Ft and α E 0 in CBS for 1-µs Pulses at 751 nm

Tables Icon

Table 4 Values of (α0E )F t,MMJ in CBS for 13-ns and 1-µs Pulses

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Fint=TAT0Ein,ext/πdA2/4/252,
Fint=1.99×106TAT0Ein,ext/T0 J/cm2.
dF/dz=-αF-βF2,
Fout=T0Fin/1+TsFin/Fsat,
TNL=1/1+Ein/Esat.
Et1=1-TNL,1/TNL,1TNL,2/1-TNL,2Et2.
Eout=T0TAEin/1+0.1Ein/Et,
T=T0Et/Ein1+αe/α0Ein/Et-1α0/αe,
Eout=T0TAEt1+m-1Ein/Et-1m,

Metrics