Abstract

Flash-lamp-pumped Ho:YAG (2090-nm) and Tm:YAG (2017-nm) lasers were, for the first time to our knowledge, passively Q switched by use of a Cr2+:ZnSe saturable absorber. A Q-switched Ho laser with 1.3-mJ pulse energy and ∼90-ns pulse duration and a Q-switched Tm laser with ∼3.2-mJ pulse energy and 90-ns pulse duration were demonstrated. Compared with the free-running output energies at the Q-switching threshold pump levels, the Q-switching efficiencies were approximately 5% for the Ho:YAG laser and 16% for the Tm:YAG laser.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. T. McGuckin, R. T. Menzies, H. Hemmati, “Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser,” Appl. Phys. Lett. 59, 2926–2928 (1991).
    [CrossRef]
  2. S. R. Bowman, M. J. Winings, S. K. Searles, B. J. Feldman, “Short-pulsed 2.1 µm laser performance of Cr,Tm,Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
    [CrossRef]
  3. T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
    [CrossRef]
  4. S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “High-average-power operation of a Q-switched diode-pumped holmium laser,” Opt. Lett. 18, 1724–1726 (1993).
    [CrossRef] [PubMed]
  5. B. A. Ermakov, A. V. Lukin, L. M. Sobolev, “Passive Q-switching of a 2-µm laser,” Opt. Spectrosc. (USSR) 63, 137 (1987).
  6. Y.-K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
    [CrossRef]
  7. Y.-K. Kuo, M. Birnbaum, “Ho:YVO4 solid-state saturable-absorber Q switch for a 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Opt. 35, 881–884 (1996).
    [CrossRef] [PubMed]
  8. Y.-K. Kuo, M. Birnbaum, F. Unlu, M.-F. Huang, “Ho:CaF2 solid-state saturable-absorber Q switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Opt. 35, 2576–2579 (1996).
    [CrossRef] [PubMed]
  9. J. Mckay, D. Krause, K. L. Schepler, “Optimization of Cr2+:CdSe for efficient laser operation,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 218–224.
  10. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
    [CrossRef]
  11. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [CrossRef]
  12. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998), Chap. 9.
    [CrossRef]
  13. P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
    [CrossRef]
  14. A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.

1997 (1)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

1996 (3)

1994 (1)

Y.-K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

1993 (1)

1992 (1)

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

1991 (2)

B. T. McGuckin, R. T. Menzies, H. Hemmati, “Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser,” Appl. Phys. Lett. 59, 2926–2928 (1991).
[CrossRef]

S. R. Bowman, M. J. Winings, S. K. Searles, B. J. Feldman, “Short-pulsed 2.1 µm laser performance of Cr,Tm,Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

1987 (1)

B. A. Ermakov, A. V. Lukin, L. M. Sobolev, “Passive Q-switching of a 2-µm laser,” Opt. Spectrosc. (USSR) 63, 137 (1987).

1966 (1)

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

Avizonis, P. V.

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

Birnbaum, M.

Bowman, S. R.

Burger, A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Chen, K. T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Chen, W.

Y.-K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Epp, D.

Ermakov, B. A.

B. A. Ermakov, A. V. Lukin, L. M. Sobolev, “Passive Q-switching of a 2-µm laser,” Opt. Spectrosc. (USSR) 63, 137 (1987).

Feldman, B. J.

Grotbeck, R. L.

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

Hemmati, H.

B. T. McGuckin, R. T. Menzies, H. Hemmati, “Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser,” Appl. Phys. Lett. 59, 2926–2928 (1991).
[CrossRef]

Huang, M.-F.

Kane, T. J.

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

Krause, D.

J. Mckay, D. Krause, K. L. Schepler, “Optimization of Cr2+:CdSe for efficient laser operation,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 218–224.

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Kubo, T. S.

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

Kuo, Y.-K.

Lukin, A. V.

B. A. Ermakov, A. V. Lukin, L. M. Sobolev, “Passive Q-switching of a 2-µm laser,” Opt. Spectrosc. (USSR) 63, 137 (1987).

Lynn, J. G.

Marquardt, C.

McGuckin, B. T.

B. T. McGuckin, R. T. Menzies, H. Hemmati, “Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser,” Appl. Phys. Lett. 59, 2926–2928 (1991).
[CrossRef]

Mckay, J.

J. Mckay, D. Krause, K. L. Schepler, “Optimization of Cr2+:CdSe for efficient laser operation,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 218–224.

McMahon, J.

Menzies, R. T.

B. T. McGuckin, R. T. Menzies, H. Hemmati, “Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser,” Appl. Phys. Lett. 59, 2926–2928 (1991).
[CrossRef]

Page, R. H.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Powell, R. C.

R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998), Chap. 9.
[CrossRef]

Quarles, G. J.

Riley, K. J.

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Schepler, K. L.

J. Mckay, D. Krause, K. L. Schepler, “Optimization of Cr2+:CdSe for efficient laser operation,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 218–224.

Searles, S. K.

Siegman, A.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.

Sobolev, L. M.

B. A. Ermakov, A. V. Lukin, L. M. Sobolev, “Passive Q-switching of a 2-µm laser,” Opt. Spectrosc. (USSR) 63, 137 (1987).

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Unlu, F.

Whitney, W.

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Winings, M. J.

S. R. Bowman, M. J. Winings, S. K. Searles, B. J. Feldman, “Short-pulsed 2.1 µm laser performance of Cr,Tm,Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

B. T. McGuckin, R. T. Menzies, H. Hemmati, “Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser,” Appl. Phys. Lett. 59, 2926–2928 (1991).
[CrossRef]

Y.-K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

IEEE J. Quantum Electron. (4)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, A. Burger, “Cr2+-doped zinc chalcogenides as efficient widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

S. R. Bowman, M. J. Winings, S. K. Searles, B. J. Feldman, “Short-pulsed 2.1 µm laser performance of Cr,Tm,Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

J. Appl. Phys. (1)

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (USSR) (1)

B. A. Ermakov, A. V. Lukin, L. M. Sobolev, “Passive Q-switching of a 2-µm laser,” Opt. Spectrosc. (USSR) 63, 137 (1987).

Other (3)

R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998), Chap. 9.
[CrossRef]

J. Mckay, D. Krause, K. L. Schepler, “Optimization of Cr2+:CdSe for efficient laser operation,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 218–224.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Background-subtracted absorption spectrum of a Cr2+:ZnSe 5.6-mm thick crystal. The optical density at 2.09 µm is approximately 0.28.

Fig. 2
Fig. 2

Bleaching experimental data and theoretical curves of the modified Avizonis–Grotbeck equation. The middle curve was obtained assuming an ideal two-level absorber (p a = 2) with σ a = 2 × 10-19 cm2. The upper curve is based on p a = 2 and σ a = 2.3 × 10-19 cm2. The lower curve shows p a = 1 and σ a = 2.3 × 10-19 cm2 a is ∼2.3 × 10-19 cm2 according to information reported in Refs. 10 and 11).

Fig. 3
Fig. 3

Experimental arrangement of a Cr:ZnSe saturable absorber Q-switched Ho:YAG and Tm:YAG laser.

Fig. 4
Fig. 4

Free-running performance of a Ho:YAG laser and a Tm:YAG laser with an output coupler of 80% reflectivity.

Fig. 5
Fig. 5

Output pulses of a Cr2+:ZnSe saturable absorber Q-switched (a) Ho3+:YAG laser and (b) Tm3+:YAG laser at 2090 and 2017 nm, respectively.

Tables (2)

Tables Icon

Table 1 Characteristics of Saturable Absorbers at Corresponding Wavelengths for a Tm:YAG Laser and a Ho:YAG Laser

Tables Icon

Table 2 Characteristics of Lasers Q-Switched by Cr:ZnSe Samples without Intracavity Focusinga

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ezz=-hνNa0pa1-σESApaσa1-exp-paσahν Ez-Na0σESApa+αaEz,
dndt=KgNg-KaNa-αc-αmn,
dNgdt=-pgKgnNg,
dNadt=-paKanNa,

Metrics