Abstract

A new type of demodulation system for low-coherence interferometric sensors based on highly birefringent fibers is presented. The optical path delay introduced by the sensor is compensated in four detection channels by quartz crystalline plates of appropriate thickness. The system can be used to decode a single-point sensor with a resolution of 2.5 × 10-3 or two serially multiplexed sensors with decreased resolution. In a multiplexed configuration each sensor is served by two detection channels. By tilting the quartz plates, we can tune the initial phase shift between interference signals in successive channels to differ by π/8 or π/4, respectively, for a single-point or a multiplexed configuration. We transferred the sinusoidal intensity changes into digital pulses by appropriate electronic processing, which eventually allows for an unambiguous phase-shift measurement with a resolution of 1/8 or 1/4 of an interference fringe. The system performance for the measurement of hydrostatic pressure changes and simultaneous changes of hydrostatic pressure and temperature is demonstrated. The pressure sensors are based on side-hole fiber to ensure high sensitivity and an operation range of 2.4 MPa. A new configuration for temperature compensation of hydrostatic pressure sensors is proposed, which is better suited for dynamic pressure measurements. In this configuration the sensing and compensating fibers are located in the same compartment of the sensor housing.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
    [CrossRef]
  2. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
    [CrossRef]
  3. T. Bosselmann, R. Ulrich, “High accuracy position-sensing with fiber-coupled white-light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VDE-Verlag GmbH, Berlin-Offenbach, Germany, 1984), pp. 361–364.
    [CrossRef]
  4. S. Chen, A. W. Palmer, K. T. C. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992).
    [CrossRef] [PubMed]
  5. W. J. Bock, W. Urbanczyk, M. B. Zaremba, “Electronically scanned white-light interferometric sensor employing highly birefringent fiber,” Opt. Commun. 101, 157–162 (1993).
    [CrossRef]
  6. R. Ulrich, “Theory of spectral encoding for fiber-optic sensors,” in Optical Fiber Sensors, A. N. Chester, S. Martellucci, A. M. Verga Scheggi, eds., NATO ASI Series (Nijhoff, Dordrecht, The Netherlands, 1987), pp. 73–130.
  7. M. T. Velluet, P. Graindorge, H. J. Arditty, “Fiber optic pressure sensor using white-light interferometry,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 78–83 (1987).
    [CrossRef]
  8. R. D. Turner, D. G. Laurin, R. M. Measures, “Localized dual wavelength fiber-optic polarimeter for the measurement of structural strain and orientation,” Appl. Opt. 31, 2994–3003 (1992).
    [CrossRef] [PubMed]
  9. N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
    [CrossRef]
  10. A. Ezbiri, R. P. Tatam, “Passive signal processing for a miniature Fabry-Perot interferometric sensor with a multimode laser diode source,” Opt. Lett. 20, 1818–1820 (1995).
    [CrossRef]
  11. A. D. Kersey, M. A. Davis, M. J. Marrone, “Differential polarimetric fiber-optic sensor configuration with dual wavelength operation,” Appl. Opt. 28, 204–206 (1989).
    [CrossRef] [PubMed]
  12. A. D. Kersey, M. Corke, D. A. Jackson, “Linearised polarimetric optical fiber sensor using a heterodyne-type signal recovery scheme,” Electron. Lett. 20, 209–211 (1984).
    [CrossRef]
  13. J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry-Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
    [CrossRef] [PubMed]
  14. A. Ezbiri, R. P. Tatam, “Three wavelength passive homodyne signal processing technique for miniature interferometric sensors,” in Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE2544, 177–184 (1995).
  15. M. Schmidt, N. Furstenau, W. J. Bock, W. Urbanczyk, “Fiber-optic polarimetric strain sensor with three-wavelength digital phase demodulation,” Opt. Lett. 25, 1334–1336 (2000).
    [CrossRef]
  16. M. Schmidt, N. Furstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999).
    [CrossRef]
  17. A. Ezbiri, R. P. Tatam, “Interrogation of low finesse optical fibre Fabry-Perot interferometers using a four wavelength technique,” Meas. Sci. Technol. 7, 117–120 (1996).
    [CrossRef]
  18. A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fiber optic Fabry-Perot sensors,” Opt. Commun. 133, 62–66 (1997).
    [CrossRef]
  19. F. Picherit, J. L. Mineau, “Interferometric-polarimetric force and temperature sensor using high and low birefringence fibers with a short coherence length source,” Opt. Commun. 79, 295–299 (1990).
    [CrossRef]
  20. W. J. Bock, T. A. Eftimov, “Simultaneous hydrostatic pressure and temperature measurement employing an LP01–LP11 fiber-optic polarization-sensitive intermodal interferometer,” IEEE Trans. Instrum. Meas. 43, 337–340 (1994).
    [CrossRef]
  21. W. J. Bock, W. Urbanczyk, “Temperature desensitization of a fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
    [CrossRef]
  22. M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringent fibers,” Electron. Lett. 19, 699–700 (1983).
    [CrossRef]
  23. W. J. Bock, W. Urbanczyk, T. A. Eftimov, J. Chen, “Development and performance of fiber optic sensor systems for absolute and quasi-static measurements in civil engineering applications,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 723–729.
    [CrossRef]
  24. J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
    [CrossRef]
  25. W. Urbanczyk, P. Kurzynowski, A. W. Wozniak, W. J. Bock, “Contrast analysis for tandem of white-light fiber-optic interferometers,” Opt. Commun. 135, 1–6 (1997).
    [CrossRef]
  26. A. W. Wozniak, P. Kurzynowski, W. Urbanczyk, W. J. Bock, “Contrast analysis for fiber-optic white-light interferometric system,” Appl. Opt. 36, 8862–8870 (1997).
    [CrossRef]
  27. W. Urbanczyk, W. J. Bock, “Visibility of white-light interference patterns for chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2105 (1993).
    [CrossRef]
  28. W. J. Bock, W. Urbanczyk, J. Wójcik, “Characterization of elliptical-core side-hole fibers for interferometric pressure sensing,” in Interferometry 94: Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 152–159 (1994).
  29. W. J. Bock, W. Urbanczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
    [CrossRef] [PubMed]
  30. W. J. Bock, W. Urbanczyk, “Temperature-hydrostatic pressure cross-sensitivity effect in elliptical core highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
    [CrossRef] [PubMed]

2000 (1)

1999 (1)

1998 (2)

1997 (3)

A. W. Wozniak, P. Kurzynowski, W. Urbanczyk, W. J. Bock, “Contrast analysis for fiber-optic white-light interferometric system,” Appl. Opt. 36, 8862–8870 (1997).
[CrossRef]

W. Urbanczyk, P. Kurzynowski, A. W. Wozniak, W. J. Bock, “Contrast analysis for tandem of white-light fiber-optic interferometers,” Opt. Commun. 135, 1–6 (1997).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fiber optic Fabry-Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

1996 (3)

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Interrogation of low finesse optical fibre Fabry-Perot interferometers using a four wavelength technique,” Meas. Sci. Technol. 7, 117–120 (1996).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Temperature-hydrostatic pressure cross-sensitivity effect in elliptical core highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (2)

W. J. Bock, W. Urbanczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
[CrossRef] [PubMed]

W. J. Bock, T. A. Eftimov, “Simultaneous hydrostatic pressure and temperature measurement employing an LP01–LP11 fiber-optic polarization-sensitive intermodal interferometer,” IEEE Trans. Instrum. Meas. 43, 337–340 (1994).
[CrossRef]

1993 (2)

W. J. Bock, W. Urbanczyk, M. B. Zaremba, “Electronically scanned white-light interferometric sensor employing highly birefringent fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

W. Urbanczyk, W. J. Bock, “Visibility of white-light interference patterns for chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2105 (1993).
[CrossRef]

1992 (3)

1990 (1)

F. Picherit, J. L. Mineau, “Interferometric-polarimetric force and temperature sensor using high and low birefringence fibers with a short coherence length source,” Opt. Commun. 79, 295–299 (1990).
[CrossRef]

1989 (1)

1984 (2)

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised polarimetric optical fiber sensor using a heterodyne-type signal recovery scheme,” Electron. Lett. 20, 209–211 (1984).
[CrossRef]

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

1983 (1)

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringent fibers,” Electron. Lett. 19, 699–700 (1983).
[CrossRef]

Arditty, H. J.

M. T. Velluet, P. Graindorge, H. J. Arditty, “Fiber optic pressure sensor using white-light interferometry,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 78–83 (1987).
[CrossRef]

Barlow, A. J.

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringent fibers,” Electron. Lett. 19, 699–700 (1983).
[CrossRef]

Bock, W. J.

M. Schmidt, N. Furstenau, W. J. Bock, W. Urbanczyk, “Fiber-optic polarimetric strain sensor with three-wavelength digital phase demodulation,” Opt. Lett. 25, 1334–1336 (2000).
[CrossRef]

N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Temperature desensitization of a fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
[CrossRef]

W. Urbanczyk, P. Kurzynowski, A. W. Wozniak, W. J. Bock, “Contrast analysis for tandem of white-light fiber-optic interferometers,” Opt. Commun. 135, 1–6 (1997).
[CrossRef]

A. W. Wozniak, P. Kurzynowski, W. Urbanczyk, W. J. Bock, “Contrast analysis for fiber-optic white-light interferometric system,” Appl. Opt. 36, 8862–8870 (1997).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Temperature-hydrostatic pressure cross-sensitivity effect in elliptical core highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
[CrossRef] [PubMed]

W. J. Bock, T. A. Eftimov, “Simultaneous hydrostatic pressure and temperature measurement employing an LP01–LP11 fiber-optic polarization-sensitive intermodal interferometer,” IEEE Trans. Instrum. Meas. 43, 337–340 (1994).
[CrossRef]

W. J. Bock, W. Urbanczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
[CrossRef] [PubMed]

W. Urbanczyk, W. J. Bock, “Visibility of white-light interference patterns for chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2105 (1993).
[CrossRef]

W. J. Bock, W. Urbanczyk, M. B. Zaremba, “Electronically scanned white-light interferometric sensor employing highly birefringent fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

W. J. Bock, W. Urbanczyk, T. A. Eftimov, J. Chen, “Development and performance of fiber optic sensor systems for absolute and quasi-static measurements in civil engineering applications,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 723–729.
[CrossRef]

W. J. Bock, W. Urbanczyk, J. Wójcik, “Characterization of elliptical-core side-hole fibers for interferometric pressure sensing,” in Interferometry 94: Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 152–159 (1994).

Bosselmann, T.

T. Bosselmann, R. Ulrich, “High accuracy position-sensing with fiber-coupled white-light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VDE-Verlag GmbH, Berlin-Offenbach, Germany, 1984), pp. 361–364.
[CrossRef]

Buczynski, R.

Chen, J.

W. J. Bock, W. Urbanczyk, T. A. Eftimov, J. Chen, “Development and performance of fiber optic sensor systems for absolute and quasi-static measurements in civil engineering applications,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 723–729.
[CrossRef]

Chen, S.

Corke, M.

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised polarimetric optical fiber sensor using a heterodyne-type signal recovery scheme,” Electron. Lett. 20, 209–211 (1984).
[CrossRef]

Dakin, J. P.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Davis, M. A.

Domanski, A. W.

Eftimov, T. A.

W. J. Bock, T. A. Eftimov, “Simultaneous hydrostatic pressure and temperature measurement employing an LP01–LP11 fiber-optic polarization-sensitive intermodal interferometer,” IEEE Trans. Instrum. Meas. 43, 337–340 (1994).
[CrossRef]

W. J. Bock, W. Urbanczyk, T. A. Eftimov, J. Chen, “Development and performance of fiber optic sensor systems for absolute and quasi-static measurements in civil engineering applications,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 723–729.
[CrossRef]

Ezbiri, A.

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fiber optic Fabry-Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Interrogation of low finesse optical fibre Fabry-Perot interferometers using a four wavelength technique,” Meas. Sci. Technol. 7, 117–120 (1996).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Passive signal processing for a miniature Fabry-Perot interferometric sensor with a multimode laser diode source,” Opt. Lett. 20, 1818–1820 (1995).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Three wavelength passive homodyne signal processing technique for miniature interferometric sensors,” in Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE2544, 177–184 (1995).

Furstenau, N.

Graindorge, P.

M. T. Velluet, P. Graindorge, H. J. Arditty, “Fiber optic pressure sensor using white-light interferometry,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 78–83 (1987).
[CrossRef]

Grattan, K. T. C.

Grattan, K. T. V.

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Jackson, D. A.

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry-Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
[CrossRef] [PubMed]

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised polarimetric optical fiber sensor using a heterodyne-type signal recovery scheme,” Electron. Lett. 20, 209–211 (1984).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, M. J. Marrone, “Differential polarimetric fiber-optic sensor configuration with dual wavelength operation,” Appl. Opt. 28, 204–206 (1989).
[CrossRef] [PubMed]

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised polarimetric optical fiber sensor using a heterodyne-type signal recovery scheme,” Electron. Lett. 20, 209–211 (1984).
[CrossRef]

Kurzynowski, P.

A. W. Wozniak, P. Kurzynowski, W. Urbanczyk, W. J. Bock, “Contrast analysis for fiber-optic white-light interferometric system,” Appl. Opt. 36, 8862–8870 (1997).
[CrossRef]

W. Urbanczyk, P. Kurzynowski, A. W. Wozniak, W. J. Bock, “Contrast analysis for tandem of white-light fiber-optic interferometers,” Opt. Commun. 135, 1–6 (1997).
[CrossRef]

Laurin, D. G.

Leite, A. P.

Marrone, M. J.

Measures, R. M.

Meggitt, B. T.

Mineau, J. L.

F. Picherit, J. L. Mineau, “Interferometric-polarimetric force and temperature sensor using high and low birefringence fibers with a short coherence length source,” Opt. Commun. 79, 295–299 (1990).
[CrossRef]

Okamoto, K.

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringent fibers,” Electron. Lett. 19, 699–700 (1983).
[CrossRef]

Palmer, A. W.

Payne, D. N.

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringent fibers,” Electron. Lett. 19, 699–700 (1983).
[CrossRef]

Picherit, F.

F. Picherit, J. L. Mineau, “Interferometric-polarimetric force and temperature sensor using high and low birefringence fibers with a short coherence length source,” Opt. Commun. 79, 295–299 (1990).
[CrossRef]

Rao, Y. J.

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

Santos, J. L.

Schmidt, M.

Tatam, R. P.

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fiber optic Fabry-Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Interrogation of low finesse optical fibre Fabry-Perot interferometers using a four wavelength technique,” Meas. Sci. Technol. 7, 117–120 (1996).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Passive signal processing for a miniature Fabry-Perot interferometric sensor with a multimode laser diode source,” Opt. Lett. 20, 1818–1820 (1995).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Three wavelength passive homodyne signal processing technique for miniature interferometric sensors,” in Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE2544, 177–184 (1995).

Turner, R. D.

Ulrich, R.

T. Bosselmann, R. Ulrich, “High accuracy position-sensing with fiber-coupled white-light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VDE-Verlag GmbH, Berlin-Offenbach, Germany, 1984), pp. 361–364.
[CrossRef]

R. Ulrich, “Theory of spectral encoding for fiber-optic sensors,” in Optical Fiber Sensors, A. N. Chester, S. Martellucci, A. M. Verga Scheggi, eds., NATO ASI Series (Nijhoff, Dordrecht, The Netherlands, 1987), pp. 73–130.

Urbanczyk, W.

M. Schmidt, N. Furstenau, W. J. Bock, W. Urbanczyk, “Fiber-optic polarimetric strain sensor with three-wavelength digital phase demodulation,” Opt. Lett. 25, 1334–1336 (2000).
[CrossRef]

N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Temperature desensitization of a fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
[CrossRef]

W. Urbanczyk, P. Kurzynowski, A. W. Wozniak, W. J. Bock, “Contrast analysis for tandem of white-light fiber-optic interferometers,” Opt. Commun. 135, 1–6 (1997).
[CrossRef]

A. W. Wozniak, P. Kurzynowski, W. Urbanczyk, W. J. Bock, “Contrast analysis for fiber-optic white-light interferometric system,” Appl. Opt. 36, 8862–8870 (1997).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Temperature-hydrostatic pressure cross-sensitivity effect in elliptical core highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
[CrossRef] [PubMed]

W. Urbanczyk, W. J. Bock, “Visibility of white-light interference patterns for chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2105 (1993).
[CrossRef]

W. J. Bock, W. Urbanczyk, M. B. Zaremba, “Electronically scanned white-light interferometric sensor employing highly birefringent fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

W. J. Bock, W. Urbanczyk, T. A. Eftimov, J. Chen, “Development and performance of fiber optic sensor systems for absolute and quasi-static measurements in civil engineering applications,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 723–729.
[CrossRef]

W. J. Bock, W. Urbanczyk, J. Wójcik, “Characterization of elliptical-core side-hole fibers for interferometric pressure sensing,” in Interferometry 94: Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 152–159 (1994).

Varnham, M. P.

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringent fibers,” Electron. Lett. 19, 699–700 (1983).
[CrossRef]

Velluet, M. T.

M. T. Velluet, P. Graindorge, H. J. Arditty, “Fiber optic pressure sensor using white-light interferometry,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 78–83 (1987).
[CrossRef]

Wade, C. A.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Wójcik, J.

W. J. Bock, W. Urbanczyk, J. Wójcik, “Characterization of elliptical-core side-hole fibers for interferometric pressure sensing,” in Interferometry 94: Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 152–159 (1994).

Wozniak, A. W.

W. Urbanczyk, P. Kurzynowski, A. W. Wozniak, W. J. Bock, “Contrast analysis for tandem of white-light fiber-optic interferometers,” Opt. Commun. 135, 1–6 (1997).
[CrossRef]

A. W. Wozniak, P. Kurzynowski, W. Urbanczyk, W. J. Bock, “Contrast analysis for fiber-optic white-light interferometric system,” Appl. Opt. 36, 8862–8870 (1997).
[CrossRef]

Zaremba, M. B.

W. J. Bock, W. Urbanczyk, M. B. Zaremba, “Electronically scanned white-light interferometric sensor employing highly birefringent fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

Appl. Opt. (9)

S. Chen, A. W. Palmer, K. T. C. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992).
[CrossRef] [PubMed]

R. D. Turner, D. G. Laurin, R. M. Measures, “Localized dual wavelength fiber-optic polarimeter for the measurement of structural strain and orientation,” Appl. Opt. 31, 2994–3003 (1992).
[CrossRef] [PubMed]

N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
[CrossRef]

A. D. Kersey, M. A. Davis, M. J. Marrone, “Differential polarimetric fiber-optic sensor configuration with dual wavelength operation,” Appl. Opt. 28, 204–206 (1989).
[CrossRef] [PubMed]

J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry-Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, “Temperature desensitization of a fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
[CrossRef]

A. W. Wozniak, P. Kurzynowski, W. Urbanczyk, W. J. Bock, “Contrast analysis for fiber-optic white-light interferometric system,” Appl. Opt. 36, 8862–8870 (1997).
[CrossRef]

W. J. Bock, W. Urbanczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, “Temperature-hydrostatic pressure cross-sensitivity effect in elliptical core highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
[CrossRef] [PubMed]

Electron. Lett. (3)

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringent fibers,” Electron. Lett. 19, 699–700 (1983).
[CrossRef]

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised polarimetric optical fiber sensor using a heterodyne-type signal recovery scheme,” Electron. Lett. 20, 209–211 (1984).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, T. A. Eftimov, “Simultaneous hydrostatic pressure and temperature measurement employing an LP01–LP11 fiber-optic polarization-sensitive intermodal interferometer,” IEEE Trans. Instrum. Meas. 43, 337–340 (1994).
[CrossRef]

Meas. Sci. Technol. (2)

A. Ezbiri, R. P. Tatam, “Interrogation of low finesse optical fibre Fabry-Perot interferometers using a four wavelength technique,” Meas. Sci. Technol. 7, 117–120 (1996).
[CrossRef]

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

Opt. Commun. (4)

W. J. Bock, W. Urbanczyk, M. B. Zaremba, “Electronically scanned white-light interferometric sensor employing highly birefringent fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fiber optic Fabry-Perot sensors,” Opt. Commun. 133, 62–66 (1997).
[CrossRef]

F. Picherit, J. L. Mineau, “Interferometric-polarimetric force and temperature sensor using high and low birefringence fibers with a short coherence length source,” Opt. Commun. 79, 295–299 (1990).
[CrossRef]

W. Urbanczyk, P. Kurzynowski, A. W. Wozniak, W. J. Bock, “Contrast analysis for tandem of white-light fiber-optic interferometers,” Opt. Commun. 135, 1–6 (1997).
[CrossRef]

Opt. Eng. (1)

W. Urbanczyk, W. J. Bock, “Visibility of white-light interference patterns for chain of coherence multiplexed sensors based on highly birefringent fibers,” Opt. Eng. 32, 2100–2105 (1993).
[CrossRef]

Opt. Lett. (3)

Other (7)

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

T. Bosselmann, R. Ulrich, “High accuracy position-sensing with fiber-coupled white-light interferometers,” in Proceedings of the Second International Conference on Optical Fiber Sensors (VDE-Verlag GmbH, Berlin-Offenbach, Germany, 1984), pp. 361–364.
[CrossRef]

R. Ulrich, “Theory of spectral encoding for fiber-optic sensors,” in Optical Fiber Sensors, A. N. Chester, S. Martellucci, A. M. Verga Scheggi, eds., NATO ASI Series (Nijhoff, Dordrecht, The Netherlands, 1987), pp. 73–130.

M. T. Velluet, P. Graindorge, H. J. Arditty, “Fiber optic pressure sensor using white-light interferometry,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 78–83 (1987).
[CrossRef]

A. Ezbiri, R. P. Tatam, “Three wavelength passive homodyne signal processing technique for miniature interferometric sensors,” in Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE2544, 177–184 (1995).

W. J. Bock, W. Urbanczyk, J. Wójcik, “Characterization of elliptical-core side-hole fibers for interferometric pressure sensing,” in Interferometry 94: Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 152–159 (1994).

W. J. Bock, W. Urbanczyk, T. A. Eftimov, J. Chen, “Development and performance of fiber optic sensor systems for absolute and quasi-static measurements in civil engineering applications,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 723–729.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of the system with four detection channels for decoding a temperature-compensated pressure sensor: SLD, superluminescent diode; PF, polarizing fiber; PMF-38, highly birefringent fiber from Corning; S1–4, beam splitters, P1–4, quartz delay plates; A1–4, analyzers; D1–4, Dref, photodiodes.

Fig. 2
Fig. 2

Response of digital outputs of a four-channel detection unit to increasing and decreasing pressure.

Fig. 3
Fig. 3

Sensor response to temperature at an applied pressure of 2.4 MPa.

Fig. 4
Fig. 4

Calibration of the sensor for a quasi-static step-type change of pressure in the range from 0 to 2.4 MPa in steps of 0.3 MPa.

Fig. 5
Fig. 5

Response of the sensor to dynamic pressure changes. Enlarged sections illustrate the time and pressure resolutions of the sensor.

Fig. 6
Fig. 6

Construction of a serially multiplexed sensor for simultaneous measurements of pressure and temperature.

Fig. 7
Fig. 7

Calibration of the multiplexed sensor to pressure and temperature. The phase increases in the differential pattern (SH-BT) and the pattern associated with the bow-tie fiber (BT) are linear versus (a) pressure and (b) temperature.

Fig. 8
Fig. 8

Response of the multiplexed sensor to simultaneous step-type changes in (a) pressure and temperature in steps of 0.6 MPa and 15 °C, respectively, (b) reconstructed pressure values, (c) temperature.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ii=I01+VS/-QγΔRS-ΔRQsinΔϕS-ΔϕQi,
ΔϕT, p=STΔT+SPΔp,
ST=KSHTLSH-KECTLEC,
SP=KSHPLSH-KECPLEC.
KECTKSHT=LSHLEC.
ΔNSHLSH-ΔNECLEC=ΔNQdQ1+0.5ΔRSmaxP,
SBTP=KBTPLBT,
SBTT=KBTTLBT,
SSH-BTP=KSHPLSH-KBTPLBT,
SSH-BTT=KSHTLSH-KBTTLBT.

Metrics