Abstract

A theoretical and experimental study of photothermal behavior in a commercially available optical path adhesive is described. Photothermal effects were examined for cw and pulsed laser radiation (∼1 µs) at 1550 nm. A fiber-optic backreflection technique was used to measure the thermo-optic glass transition temperature of the adhesive. This transition temperature was then used to calibrate fiber-optic photothermal blooming and backreflection pump–probe experiments. Simple thermal models predict ΔT at 300 mW (cw) to be 65 °C and 53 °C at 100 W (pulsed). Experimental results are in reasonable agreement with theoretical predictions. The characteristic photothermal relaxation time after a 1-µs pulse for optical path adhesives is found to be 166 µs at the end of a fiber where the mode field diameter is 10.5 µm. Photothermally induced temperatures were found to be below the thermal degradation temperature of the adhesive even at powers as high as 1 W (cw) or 100 W (pulse).

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
    [CrossRef]
  2. Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
    [CrossRef]
  3. S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.
  4. M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).
  5. T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).
  6. J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).
  7. R. A. Norwood, “Return loss measurements for the determination of critical materials parameters for polymer optical waveguides,” in Organic Thin Films for Photonic Applications, Vol. 14 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 161–163.
  8. N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
    [CrossRef]
  9. S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.
  10. H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).
  11. M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).
  12. Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
    [CrossRef]
  13. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).
  14. R. Wood, Laser Damage in Optical Materials (Institute of Physics, Bristol, UK, 1986).
  15. A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
    [CrossRef]
  16. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
    [CrossRef]
  17. A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).
  18. R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).
  19. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, Oxford, UK, 1975).
  20. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Vol. 134 of Chemical Analysis (Wiley, New York, 1996).

2000

J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).

1999

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

1998

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

1996

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

1995

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

1992

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

1987

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

1983

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

1980

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

1979

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Beeson, K. W.

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Vol. 134 of Chemical Analysis (Wiley, New York, 1996).

Braslavsky, S. E.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Butenin, A. V.

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).

Crank, J.

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, Oxford, UK, 1975).

De Dobbelaere, P.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Diemeer, M.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Donckers, M. C. J. M.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Dovichi, N. J.

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

Dyumaev, K. M.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Einsiedel, H.

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

Flipse, M.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Hanawa, F.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Heihoff, K.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Hibino, Y.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Ishii, M.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).

Kiger, F.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Kitoh, T.

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Kobayashi, S.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Kogan, B. Ya.

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Kulakofsky, J.

J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).

Manenkov, A. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

Maruno, T.

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Maslyukov, A. P.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Matyushin, G. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

McFarland, M. J.

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

Mittler-Neher, S.

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

Myers, M.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Nakagome, H.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Nechitailo, V. S.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

Norwood, R. A.

R. A. Norwood, “Return loss measurements for the determination of critical materials parameters for polymer optical waveguides,” in Organic Thin Films for Photonic Applications, Vol. 14 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 161–163.

O’Connell, R. M.

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Ohara, S.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Prokhorov, A. M.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Saito, T. T.

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Scaiano, J. C.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Spector, A.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Strite, T.

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

Takato, N.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Taketani, N.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Takezawa, Y.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Tanno, S.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Tumolillo, T.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

van der Stokker, P.

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

Wood, R.

R. Wood, Laser Damage in Optical Materials (Institute of Physics, Bristol, UK, 1986).

Yamamada, Y.

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Crit. Rev. Anal. Chem.

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

J. Lightwave Technol.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

J. Polym. Sci.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Jpn J. Appl. Phys.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Lightwave

J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).

Opt. Appl.

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

Opt. Eng.

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Photonics Spectra

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

Sov. J. Quantum Electron.

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Sov. Phys. Tech. Phys.

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Other

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, Oxford, UK, 1975).

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Vol. 134 of Chemical Analysis (Wiley, New York, 1996).

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).

R. Wood, Laser Damage in Optical Materials (Institute of Physics, Bristol, UK, 1986).

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

R. A. Norwood, “Return loss measurements for the determination of critical materials parameters for polymer optical waveguides,” in Organic Thin Films for Photonic Applications, Vol. 14 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 161–163.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Near-infrared absorption spectrum of cured Masterbond UV15.

Fig. 2
Fig. 2

Thermo-optic backreflectance experimental setup used to measure dn/dT of an optical adhesive cured at the end of single-mode fiber. The hot stage is used to control the temperature of the adhesive. The detector monitors the reflected intensity that is due to the index change.

Fig. 3
Fig. 3

High-power photothermal blooming experimental setup. A high-power cw or pulsed 1550-nm source is used as the pump to induce photothermal heating in the adhesive fiber gap sample. The 980-nm probe beam is used to monitor photothermal response in the adhesive. The intensity of the probe beam is monitored with a silicon detector.

Fig. 4
Fig. 4

High-power photothermal backreflectance experimental setup. The intensity of the reflected 980-nm probe signal is monitored as a function of the high-power 1550-nm source.

Fig. 5
Fig. 5

Results of numerical simulations showing the photothermally induced temperature rise in Masterbond UV15 cured at the end of SMF-28 fiber by use of a high-power cw fiber laser source. The incident power is 300 mW.

Fig. 6
Fig. 6

Results of numerical simulations showing the peak temperature rise as a function of time that is due to cw heating. The incident power is 300 mW.

Fig. 7
Fig. 7

Results of the thermo-optic backreflectance measurements of Masterbond UV15 at 1550 nm as a function of temperature. At 85 °C the adhesive goes through the T g indicated by a change in the slope of dn/dT.

Fig. 8
Fig. 8

Photothermal blooming test results of Masterbond UV15. The data show the photothermal probe signal versus the incident 1550-nm pump power. The change in slope at 300 mW indicates the pump power at which the glass transition temperature is reached in the adhesive caused by photothermal heating. Filled squares are points below T g , open circles are points above T g , and solid curves are best linear fits of these two data sets.

Fig. 9
Fig. 9

Photothermal probe signal versus the induced temperature rise in Masterbond UV15 adhesive. The change in slope at 300 mW indicates the pump power at which the glass transition temperature is reached in the adhesive caused by photothermal heating. Filled squares are points below T g , open circles are points above T g temperature, and solid curves are best linear fits of these two data sets.

Fig. 10
Fig. 10

High-power cw photothermal backreflectance result in Masterbond UV15 adhesive. The data show the photothermally induced index change versus pump-laser power at 1550 nm. Filled squares are points below T g and open circles are points above T g . Solid curves are best linear fits of these two data sets.

Fig. 11
Fig. 11

Photothermal signal of the probe (980-nm) signal time response in a pulsed pump–probe experiment in Masterbond UV15 adhesive. The pulse was 20 µJ at 1550 nm and was 1 µs in duration. The best fit with approximation (10) (solid curve) gives a characteristic photothermal decay time t c of 166 µs.

Fig. 12
Fig. 12

Amplitude of photothermal probe signal versus pump pulse energy.

Tables (1)

Tables Icon

Table 1 ΔT Induced by High-Power 1550-nm cw and Pulsed Sources

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

RL=-10 logna-nfcna+nfc2,
na=nfc10-RL/20+11-10-RL/20.
ΔT=αP4πKln4DtCR2+a22Dt ln4DtCR2+14Dt×a2+R2-2a2 lnaR+,
ΔT=0.23αEπr2ρCp,
Er=2P/πa2 exp-2r2/a2,
f=πnKa2Pαldn/dT,
F0-FF=2zf,
F0-FFPαldn/dTNAnπKa.
ΔT1ldn/dTF0-FF.
F0-FtFtPαldn/dTNAnπκα11+tc/2t,
ΔTpulse=ΔTcwFpulsePcwFcwPpulse1+tc/2ti,

Metrics