Abstract

We have experimentally demonstrated a two-dimensional (2-D) image transmission based on the ultrafast optical data format conversion between a temporal signal and a spatial signal with an ultrashort optical pulse. In the proposed system we adopt a spectral holography technique to transmit a one-dimensional (1-D) spatial signal and use a spatial-domain time–frequency transform to realize a transform between 1-D and 2-D spatial signals. By use of these techniques, a low-optical-loss transmission system can be constructed. To demonstrate a 2-D image transmission with this technique, we achieved experimentally transmission of the alphabet letter T as a 3 × 3 pixel 2-D spatial image.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
    [CrossRef] [PubMed]
  2. P. C. Sun, Y. T. Mazurenko, Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14, 1159–1170 (1997).
    [CrossRef]
  3. E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett. 20, 1166–1168 (1995).
    [CrossRef] [PubMed]
  4. A. M. Weiner, J. P. Heritage, E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 8, 1563–1572 (1988).
    [CrossRef]
  5. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef] [PubMed]
  6. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
    [CrossRef] [PubMed]
  7. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Peak, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
    [CrossRef] [PubMed]
  8. Y. T. Mazurenko, “Pulsed Fourier optics,” Opt. Spektrosk. 57, 8–11 (1984).
  9. Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
    [CrossRef]
  10. Y. Ichioka, T. Konishi, “Temporal–spatial optical information processing,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE, 3137, 222–227 (1997).
  11. T. Konishi, Y. Ichioka, “Ultrafast image transmission by optical time-to-two-dimensional-space-to-time-to-two-dimensional-space conversion,” J. Opt. Soc. Am. A 16, 1076–1088 (1999).
    [CrossRef]
  12. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
    [CrossRef] [PubMed]
  13. J. D. Downie, D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780–5789 (1996).
    [CrossRef] [PubMed]
  14. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–720 (1997).
    [CrossRef] [PubMed]

1999

1997

1996

1995

1994

1993

1992

1990

1988

A. M. Weiner, J. P. Heritage, E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 8, 1563–1572 (1988).
[CrossRef]

1984

Y. T. Mazurenko, “Pulsed Fourier optics,” Opt. Spektrosk. 57, 8–11 (1984).

Birge, R. R.

Blumer, R.

Brubaker, R. M.

Chang, W. S. C.

Chen, Z.

Chiu, T. H.

De Souza, E. A.

Ding, Y.

Downie, J. D.

Fainman, Y.

Gross, R. B.

Heritage, J. P.

A. M. Weiner, J. P. Heritage, E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 8, 1563–1572 (1988).
[CrossRef]

Ichioka, Y.

T. Konishi, Y. Ichioka, “Ultrafast image transmission by optical time-to-two-dimensional-space-to-time-to-two-dimensional-space conversion,” J. Opt. Soc. Am. A 16, 1076–1088 (1999).
[CrossRef]

Y. Ichioka, T. Konishi, “Temporal–spatial optical information processing,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE, 3137, 222–227 (1997).

Kirschner, E. M.

A. M. Weiner, J. P. Heritage, E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 8, 1563–1572 (1988).
[CrossRef]

Knox, W. H.

Konishi, T.

T. Konishi, Y. Ichioka, “Ultrafast image transmission by optical time-to-two-dimensional-space-to-time-to-two-dimensional-space conversion,” J. Opt. Soc. Am. A 16, 1076–1088 (1999).
[CrossRef]

Y. Ichioka, T. Konishi, “Temporal–spatial optical information processing,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE, 3137, 222–227 (1997).

Leaird, D. E.

Li, M.

Mazurenko, Y. T.

Melloch, M. R.

Miller, D. A. B.

Nolte, D. D.

Nuss, M. C.

Partovi, A.

Patel, J. S.

Peak, E. G.

Reitze, D. H.

Smithey, D. T.

Song, Q. W.

Sun, P. C.

Weiner, A. M.

Wullert, J. R.

Yu, P. K. L.

Zhang, C.

Appl. Opt.

Appl. Phys. B

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

A. M. Weiner, J. P. Heritage, E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 8, 1563–1572 (1988).
[CrossRef]

Opt. Lett.

Opt. Spektrosk.

Y. T. Mazurenko, “Pulsed Fourier optics,” Opt. Spektrosk. 57, 8–11 (1984).

Other

Y. Ichioka, T. Konishi, “Temporal–spatial optical information processing,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE, 3137, 222–227 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Basic setup of recording spectral holography.

Fig. 2
Fig. 2

Basic setup for reconstruction of signal pulse.

Fig. 3
Fig. 3

Principle of ultrafast optical time-to-2-D-space-to-time-to-2-D-space conversion.

Fig. 4
Fig. 4

Principle of 2-D image transmission based on spectral holography.

Fig. 5
Fig. 5

Processing procedure of 2-D-space-to-1-D-space transform.

Fig. 6
Fig. 6

Processing procedure of a transmission based on spectral holography.

Fig. 7
Fig. 7

Processing procedure of a retrieval based on spectral holography.

Fig. 8
Fig. 8

Processing procedure of 1-D-space-to-2-D-space transform.

Fig. 9
Fig. 9

Experimental setup for the proposed system.

Fig. 10
Fig. 10

Spatial frequency mask for encoding a 2-D image.

Fig. 11
Fig. 11

Encoded 2-D spatial image as alphabet letter T.

Fig. 12
Fig. 12

Transformed 1-D image at P2.

Fig. 13
Fig. 13

Transmitted 1-D image at P3.

Fig. 14
Fig. 14

Final image of transmitted 2-D image T at P5.

Fig. 15
Fig. 15

Temporal duration of a transmission signal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2fλν sin θc s,
DCR=n2c2fλν sin θ bit/s.
DCR=n2N  bit/s.

Metrics