Abstract

We report experimental results and performance analysis of a dedicated optoelectronic processor that implements stochastic optimization-based image-processing tasks in real time. We first show experimental results using a proof-of-principle-prototype demonstrator based on standard silicon–complementary-metal-oxide-semiconductor (CMOS) technology and liquid-crystal spatial light modulators. We then elaborate on the advantages of using a hybrid CMOS–self-electro-optic-device-based smart-pixel array to monolithically integrate photodetectors and modulators on the same chip, providing compact, high-bandwidth intrachip optoelectronic interconnects. We have modeled the operation of the monolithic processor, clearly showing system-performance improvement.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Analy. Mach. Intell. 6, 721–741 (1984).
    [CrossRef]
  2. S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671–680 (1982).
    [CrossRef]
  3. P. Chavel, A. Cassinelli, I. Glaser, “Optoelectronic cellular automata for video real time vision,” in Optics in Computing 2000, R. A. Lessard, T. Galstian, Proc. SPIE4089, 374–381 (2000).
  4. A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings of the Tenth International Optical Computing Conference, S. Horwitz, ed. (IEEE Computer Society and International Optical Conference, New York, 1983), pp. 13–17.
    [CrossRef]
  5. J. Taboury, J. M. Wang, P. Chavel, F. Devos, P. Garda, “Optical cellular processor architecture. 1. Principles,” Appl. Opt. 9, 1643–1650 (1988).
    [CrossRef]
  6. J. Taboury, J. M. Wang, P. Chavel, F. Devos, “Optical cellular processor architecture. 2: Illustration and system considerations,” Appl. Opt. 28, 3138–3147 (1989).
    [CrossRef] [PubMed]
  7. D. E. Knuth, “Random numbers,” in The Art of Computer Programming, (Addison-Wesley, Reading, Mass., 1969), Vol. 2, Chap. 3, pp. 9–22.
  8. Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
    [CrossRef]
  9. A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
    [CrossRef]
  10. P. Chavel, Ph. Lalanne, J. C. Rodier, “Optoelectronic stochastic processor arrays: demonstration of video rate simulated annealing noise cleaning operation,” in Proceedings of the Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI) (IEEE Computer Society, Los Alamitos, Calif., 1996), 158–167.
  11. P. Lalande, P. Bouthemy, “A statistical approach to the detection and tracking of moving objects in an image sequence,” Signal. Proc. 5, 947–950 (1990).
  12. P. Lalande, “Détection du mouvement dans les séquences d’images selon une approche markovienne; application à la robotique sous-marine,” Ph.D. dissertation (Université de Rennes I, Rennes, France, 1990).
  13. A. Caplier, “Modèles markoviens de détection du mouvement dans les séquences d’images. Approches sptio-temporelle et mises en œuvre temps réel,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1995).
  14. Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
    [CrossRef]
  15. Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999).
    [CrossRef]
  16. P. Chavel, Ph. Lalanne, “On parallel algorithms for optical image processors,” in Optical Computing: Proceedings of the International Conference, Heriot-Watt University, Edinburgh, UK, August 22–25 1994, B. S. Wherrett, ed. (Institute of Physics, London, 1995), pp. 11–16.
  17. A. Cassinelli, P. Lalanne, P. Chavel, I. Glaser, “Demonstration of video-rate optoelectronic parallel processors for noise cleaning in binary images by simulated annealing,” in Optical Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, Proc. SPIE3490, 163–166, Bellingham, (1998).
  18. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” IEEE J. Sel. Top. Quantum Electron. 2, 106–116 (1996).
    [CrossRef]
  19. A. V. Krishnamoorthy, K. W. Goosen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAS/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).
  20. D. A. B. Miller, “Quantum well self-electrooptic devices,” Opt. Quantum Electron. 22, 61–98 (1990).
  21. M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).
  22. G. Prémont, “Photothyristors PnpN et recuit simulé optoélectronique pour la vision bas-niveau,” Thèse de l’université de Paris-Sud, Orsay, France (1999).
  23. B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
    [CrossRef]
  24. P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992).
    [CrossRef]
  25. K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
    [CrossRef]
  26. M. P. Y. Desmulliez, B. S. Wherrett, “Trends in hybrid-VLSI optoelectronics for optical information processing,” in Optical Interconnections and Computing, M. Lapp, A. Hasegawa, B. J. Snavely, H. Starle, A. C. Tam, T. Wilson, eds. (Oxford U. Press, Oxford Series of Optical and Imaging Sciences, London) (to be published).
  27. I. Seyd-Darwish, “Etude et réalisation d’un automate cellulaire optoélectronique parallèle,” Ph.D. dissertation (de l’Université de Paris Sud, Orsay, France, 1991).
  28. M. P. Y. Desmulliez, B. S. Wherret, A. J. Waddie, J. F. Snowdon, J. A. B. Dines, “Performance analysis of self-electro-optic-effect-device-based (SEED-based) smart-pixel arrays used in data sorting,” Appl. Opt. 35, 6397–6415 (1996).
    [CrossRef] [PubMed]
  29. A. L. Lentine, L. M. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamed smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994).
    [CrossRef]
  30. J. P. Dérutin, B. Besserer, T. Tixier, A. Klikel, “A parallel vision machine: transvision,” in Proceedings of Computer Architecture for Machine Perception, B. Zavidovique, P. L. Wendel, eds. (Paris, 16–18 Dec. 1991), pp. 241–251.
  31. C. Dumontier, “Etude et mise en œuvre temps réel d’un algorithme de detection du mouvement par approche markovienne,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1996).
  32. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
    [CrossRef] [PubMed]
  33. R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
    [CrossRef]
  34. J. M. Wu, Ch. B. Kuznia, B. Hoanca, Ch. H. Chen, A. A. Sawchuk, “Demonstration and architectural analysis of complementary metal-oxide semiconductor/multiple-quantum-well smart-pixel array cellular logic processors for single-instruction multiple-data parallel-pipeline processing,” Appl. Opt. 38, 2270–2281 (1999).
    [CrossRef]
  35. A. C. Walker, T.-Y. Yang, J. Gourlay, J. A. B. Dines, M. G. Forbes, S. M. Prince, D. A. Baillie, D. T. Neilson, R. Williams, L. C. Wilkinson, G. R. Smith, M. P. Y. Desmulliez, G. S. Buller, M. R. Taghizadeh, A. Waddie, I. Underwood, C. R. Stanley, F. Pottier, B. Vögele, W. Sibbett, “Optoelectronic systems based on InGaAs–complementary-metal-oxide-semiconductor smart-pixel arrays and free-space optical interconnects,” Appl. Opt. 37, 2822–2830 (1998).
    [CrossRef]
  36. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
    [CrossRef]
  37. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
    [CrossRef]
  38. Advanced research initiative in microelectronics, IST programme for Future and Emerging Technologies: Technology roadmap for Optoelectronic Interconnects for Integrated Circuits (MEL-ARI OPTO), published by the European Commission with no author name, (September1999). http://www.cordis.lu/esprit/src/melari.htm
  39. M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
    [CrossRef]
  40. H. M. Ozatkas, J. W. Goodman, “Lower bound for the communication volume required for optically interconnected array of points,” J. Opt. Soc. Am. A 7, 2100–2106 (1990).
    [CrossRef]
  41. S. Lin, A. Grot, J. Luo, D. Psaltis, “GaAs optoelectronic neuron arrays,” Appl. Opt. 32, 1275–1288 (1992).
    [CrossRef]
  42. I. Bar-Tana, J. P. Sharpe, D. J. McKnight, K. M. Johnson, “Smart-pixel spatial light modulator for incorporation in an optoelectronic neural network,” Opt. Lett. 20, 303–305 (1995).
    [CrossRef] [PubMed]
  43. A. Kirk, T. Tabata, M. Ishikawa, “Design of an optoelectronic cellular processing system with a reconfigurable holographic interconnect,” Appl. Opt. 33, 1629–1639 (1994).
    [CrossRef] [PubMed]

1999

Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999).
[CrossRef]

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

J. M. Wu, Ch. B. Kuznia, B. Hoanca, Ch. H. Chen, A. A. Sawchuk, “Demonstration and architectural analysis of complementary metal-oxide semiconductor/multiple-quantum-well smart-pixel array cellular logic processors for single-instruction multiple-data parallel-pipeline processing,” Appl. Opt. 38, 2270–2281 (1999).
[CrossRef]

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

1998

1997

A. V. Krishnamoorthy, K. W. Goosen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAS/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).

1996

1995

I. Bar-Tana, J. P. Sharpe, D. J. McKnight, K. M. Johnson, “Smart-pixel spatial light modulator for incorporation in an optoelectronic neural network,” Opt. Lett. 20, 303–305 (1995).
[CrossRef] [PubMed]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
[CrossRef]

K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

1994

A. Kirk, T. Tabata, M. Ishikawa, “Design of an optoelectronic cellular processing system with a reconfigurable holographic interconnect,” Appl. Opt. 33, 1629–1639 (1994).
[CrossRef] [PubMed]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

A. L. Lentine, L. M. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamed smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994).
[CrossRef]

1993

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
[CrossRef]

1992

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992).
[CrossRef]

S. Lin, A. Grot, J. Luo, D. Psaltis, “GaAs optoelectronic neuron arrays,” Appl. Opt. 32, 1275–1288 (1992).
[CrossRef]

1991

M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).

1990

D. A. B. Miller, “Quantum well self-electrooptic devices,” Opt. Quantum Electron. 22, 61–98 (1990).

P. Lalande, P. Bouthemy, “A statistical approach to the detection and tracking of moving objects in an image sequence,” Signal. Proc. 5, 947–950 (1990).

H. M. Ozatkas, J. W. Goodman, “Lower bound for the communication volume required for optically interconnected array of points,” J. Opt. Soc. Am. A 7, 2100–2106 (1990).
[CrossRef]

1989

1988

1984

S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Analy. Mach. Intell. 6, 721–741 (1984).
[CrossRef]

1982

S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671–680 (1982).
[CrossRef]

Ayliffe, M. H.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

Baillie, D. A.

Bar-Tana, I.

Beckman, M. G.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

Belhaire, E.

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
[CrossRef]

Bernier, E.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

Besserer, B.

J. P. Dérutin, B. Besserer, T. Tixier, A. Klikel, “A parallel vision machine: transvision,” in Proceedings of Computer Architecture for Machine Perception, B. Zavidovique, P. L. Wendel, eds. (Paris, 16–18 Dec. 1991), pp. 241–251.

Boisset, G. C.

Borghs, G.

B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
[CrossRef]

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992).
[CrossRef]

M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).

Bouthemy, P.

P. Lalande, P. Bouthemy, “A statistical approach to the detection and tracking of moving objects in an image sequence,” Signal. Proc. 5, 947–950 (1990).

Brubaker, J. L.

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Buczynski, R.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

Buller, G. S.

Caplier, A.

A. Caplier, “Modèles markoviens de détection du mouvement dans les séquences d’images. Approches sptio-temporelle et mises en œuvre temps réel,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1995).

Cassinelli, A.

A. Cassinelli, P. Lalanne, P. Chavel, I. Glaser, “Demonstration of video-rate optoelectronic parallel processors for noise cleaning in binary images by simulated annealing,” in Optical Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, Proc. SPIE3490, 163–166, Bellingham, (1998).

P. Chavel, A. Cassinelli, I. Glaser, “Optoelectronic cellular automata for video real time vision,” in Optics in Computing 2000, R. A. Lessard, T. Galstian, Proc. SPIE4089, 374–381 (2000).

Chavel, P.

Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999).
[CrossRef]

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
[CrossRef]

J. Taboury, J. M. Wang, P. Chavel, F. Devos, “Optical cellular processor architecture. 2: Illustration and system considerations,” Appl. Opt. 28, 3138–3147 (1989).
[CrossRef] [PubMed]

J. Taboury, J. M. Wang, P. Chavel, F. Devos, P. Garda, “Optical cellular processor architecture. 1. Principles,” Appl. Opt. 9, 1643–1650 (1988).
[CrossRef]

P. Chavel, A. Cassinelli, I. Glaser, “Optoelectronic cellular automata for video real time vision,” in Optics in Computing 2000, R. A. Lessard, T. Galstian, Proc. SPIE4089, 374–381 (2000).

P. Chavel, Ph. Lalanne, J. C. Rodier, “Optoelectronic stochastic processor arrays: demonstration of video rate simulated annealing noise cleaning operation,” in Proceedings of the Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI) (IEEE Computer Society, Los Alamitos, Calif., 1996), 158–167.

P. Chavel, Ph. Lalanne, “On parallel algorithms for optical image processors,” in Optical Computing: Proceedings of the International Conference, Heriot-Watt University, Edinburgh, UK, August 22–25 1994, B. S. Wherrett, ed. (Institute of Physics, London, 1995), pp. 11–16.

A. Cassinelli, P. Lalanne, P. Chavel, I. Glaser, “Demonstration of video-rate optoelectronic parallel processors for noise cleaning in binary images by simulated annealing,” in Optical Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, Proc. SPIE3490, 163–166, Bellingham, (1998).

Chen, Ch. H.

Chirovsky, L. M.

A. L. Lentine, L. M. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamed smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994).
[CrossRef]

Chirovsky, L. M. F.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” IEEE J. Sel. Top. Quantum Electron. 2, 106–116 (1996).
[CrossRef]

Cloonan, T. J.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Crisci, R. J.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

D’Asaro, L. A.

K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Dérutin, J. P.

J. P. Dérutin, B. Besserer, T. Tixier, A. Klikel, “A parallel vision machine: transvision,” in Proceedings of Computer Architecture for Machine Perception, B. Zavidovique, P. L. Wendel, eds. (Paris, 16–18 Dec. 1991), pp. 241–251.

Desmulliez, M. P. Y.

Devos, F.

Dines, J. A. B.

Dumontier, C.

C. Dumontier, “Etude et mise en œuvre temps réel d’un algorithme de detection du mouvement par approche markovienne,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1996).

Dupret, A.

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

Forbes, M. G.

Garda, P.

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
[CrossRef]

J. Taboury, J. M. Wang, P. Chavel, F. Devos, P. Garda, “Optical cellular processor architecture. 1. Principles,” Appl. Opt. 9, 1643–1650 (1988).
[CrossRef]

Gelatt, C. D.

S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671–680 (1982).
[CrossRef]

Geman, D.

S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Analy. Mach. Intell. 6, 721–741 (1984).
[CrossRef]

Geman, S.

S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Analy. Mach. Intell. 6, 721–741 (1984).
[CrossRef]

Glaser, I.

P. Chavel, A. Cassinelli, I. Glaser, “Optoelectronic cellular automata for video real time vision,” in Optics in Computing 2000, R. A. Lessard, T. Galstian, Proc. SPIE4089, 374–381 (2000).

A. Cassinelli, P. Lalanne, P. Chavel, I. Glaser, “Demonstration of video-rate optoelectronic parallel processors for noise cleaning in binary images by simulated annealing,” in Optical Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, Proc. SPIE3490, 163–166, Bellingham, (1998).

Goodman, J. W.

Goosen, K. W.

A. V. Krishnamoorthy, K. W. Goosen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAS/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).

K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Gourlay, J.

Grot, A.

Heremans, P.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
[CrossRef]

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992).
[CrossRef]

M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).

Hinterlong, S. J.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Hinton, H. S.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Hoanca, B.

Hsiao, W.

Huang, A.

A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings of the Tenth International Optical Computing Conference, S. Horwitz, ed. (IEEE Computer Society and International Optical Conference, New York, 1983), pp. 13–17.
[CrossRef]

Hui, S. P.

K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Ishikawa, M.

Johnson, K. M.

Kabal, D.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

Kerbis, E.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Khurana, P.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

Kim, N. H.

Kirk, A.

Kirk, A. G.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

Kirpatrick, S.

S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671–680 (1982).
[CrossRef]

Klikel, A.

J. P. Dérutin, B. Besserer, T. Tixier, A. Klikel, “A parallel vision machine: transvision,” in Proceedings of Computer Architecture for Machine Perception, B. Zavidovique, P. L. Wendel, eds. (Paris, 16–18 Dec. 1991), pp. 241–251.

Knupfer, B.

B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
[CrossRef]

Knuth, D. E.

D. E. Knuth, “Random numbers,” in The Art of Computer Programming, (Addison-Wesley, Reading, Mass., 1969), Vol. 2, Chap. 3, pp. 9–22.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, K. W. Goosen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAS/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” IEEE J. Sel. Top. Quantum Electron. 2, 106–116 (1996).
[CrossRef]

Kuijk, M.

B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
[CrossRef]

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992).
[CrossRef]

M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).

Kuznia, Ch. B.

Lacroix, F.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

Lalande, P.

P. Lalande, P. Bouthemy, “A statistical approach to the detection and tracking of moving objects in an image sequence,” Signal. Proc. 5, 947–950 (1990).

P. Lalande, “Détection du mouvement dans les séquences d’images selon une approche markovienne; application à la robotique sous-marine,” Ph.D. dissertation (Université de Rennes I, Rennes, France, 1990).

Lalanne, P.

A. Cassinelli, P. Lalanne, P. Chavel, I. Glaser, “Demonstration of video-rate optoelectronic parallel processors for noise cleaning in binary images by simulated annealing,” in Optical Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, Proc. SPIE3490, 163–166, Bellingham, (1998).

Lalanne, Ph.

Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999).
[CrossRef]

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
[CrossRef]

P. Chavel, Ph. Lalanne, J. C. Rodier, “Optoelectronic stochastic processor arrays: demonstration of video rate simulated annealing noise cleaning operation,” in Proceedings of the Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI) (IEEE Computer Society, Los Alamitos, Calif., 1996), 158–167.

P. Chavel, Ph. Lalanne, “On parallel algorithms for optical image processors,” in Optical Computing: Proceedings of the International Conference, Heriot-Watt University, Edinburgh, UK, August 22–25 1994, B. S. Wherrett, ed. (Institute of Physics, London, 1995), pp. 11–16.

Lentine, A. L.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” IEEE J. Sel. Top. Quantum Electron. 2, 106–116 (1996).
[CrossRef]

A. L. Lentine, L. M. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamed smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Lin, S.

Liu, Y. S.

Luo, J.

McCormick, F. B.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

McKnight, D. J.

Miller, D. A. B.

D. A. B. Miller, “Quantum well self-electrooptic devices,” Opt. Quantum Electron. 22, 61–98 (1990).

Morrison, R. L.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Neilson, D. T.

Novotny, R. A.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Ortega, R.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

Otazo, M. R.

Ozatkas, H. M.

Pavlasek, D.

Plant, D. V.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

Pottier, F.

Prémont, G.

Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999).
[CrossRef]

G. Prémont, “Photothyristors PnpN et recuit simulé optoélectronique pour la vision bas-niveau,” Thèse de l’université de Paris-Sud, Orsay, France (1999).

Prévost, D.

Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999).
[CrossRef]

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

Prince, S. M.

Psaltis, D.

Robertson, B.

Robertson, W. M.

Rodier, J. C.

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
[CrossRef]

P. Chavel, Ph. Lalanne, J. C. Rodier, “Optoelectronic stochastic processor arrays: demonstration of video rate simulated annealing noise cleaning operation,” in Proceedings of the Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI) (IEEE Computer Society, Los Alamitos, Calif., 1996), 158–167.

Sasian, J. M.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Sawchuk, A. A.

Seyd-Darwish, I.

I. Seyd-Darwish, “Etude et réalisation d’un automate cellulaire optoélectronique parallèle,” Ph.D. dissertation (de l’Université de Paris Sud, Orsay, France, 1991).

Shang, A. Z.

Sharpe, J. P.

Sibbett, W.

Simmons, J.

Smith, G. R.

Snowdon, J. F.

Song, K.

Stanley, C. R.

Szoplik, T.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

Tabata, T.

Taboury, J.

Taghizadeh, M. R.

Thienpont, H.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

Thompson, D. A.

Tixier, T.

J. P. Dérutin, B. Besserer, T. Tixier, A. Klikel, “A parallel vision machine: transvision,” in Proceedings of Computer Architecture for Machine Perception, B. Zavidovique, P. L. Wendel, eds. (Paris, 16–18 Dec. 1991), pp. 241–251.

Tooley, F. A. P.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Tseng, B.

K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Underwood, I.

Vecchi, M. P.

S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671–680 (1982).
[CrossRef]

Veretennicoff, I.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

Vögele, B.

Vounckx, R.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
[CrossRef]

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992).
[CrossRef]

M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).

Waddie, A.

Waddie, A. J.

Walker, A. C.

Walker, J. A.

K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Walker, S. L.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

Wang, J. M.

Wherret, B. S.

Wherrett, B. S.

M. P. Y. Desmulliez, B. S. Wherrett, “Trends in hybrid-VLSI optoelectronics for optical information processing,” in Optical Interconnections and Computing, M. Lapp, A. Hasegawa, B. J. Snavely, H. Starle, A. C. Tam, T. Wilson, eds. (Oxford U. Press, Oxford Series of Optical and Imaging Sciences, London) (to be published).

Wilkinson, L. C.

Williams, R.

Wojcik, M. J.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

Woodward, T. K.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” IEEE J. Sel. Top. Quantum Electron. 2, 106–116 (1996).
[CrossRef]

A. L. Lentine, L. M. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamed smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994).
[CrossRef]

Wu, J. M.

Yang, T.-Y.

Ann. Phys.

Ph. Lalanne, D. Prévost, G. Prémont, P. Chavel, “Optoelectronic implementation of stochastic artificial retinas,” Ann. Phys. 24, 125–152 (1999).
[CrossRef]

App. Opt.

F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “A six-stage digital free-space optical switching network using S-SEEDs,” App. Opt. 32, 5153–5171 (1993).
[CrossRef]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, E. Kerbis, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” App. Opt. 33, 1601–1618 (1994).
[CrossRef]

Appl. Opt.

J. M. Wu, Ch. B. Kuznia, B. Hoanca, Ch. H. Chen, A. A. Sawchuk, “Demonstration and architectural analysis of complementary metal-oxide semiconductor/multiple-quantum-well smart-pixel array cellular logic processors for single-instruction multiple-data parallel-pipeline processing,” Appl. Opt. 38, 2270–2281 (1999).
[CrossRef]

A. C. Walker, T.-Y. Yang, J. Gourlay, J. A. B. Dines, M. G. Forbes, S. M. Prince, D. A. Baillie, D. T. Neilson, R. Williams, L. C. Wilkinson, G. R. Smith, M. P. Y. Desmulliez, G. S. Buller, M. R. Taghizadeh, A. Waddie, I. Underwood, C. R. Stanley, F. Pottier, B. Vögele, W. Sibbett, “Optoelectronic systems based on InGaAs–complementary-metal-oxide-semiconductor smart-pixel arrays and free-space optical interconnects,” Appl. Opt. 37, 2822–2830 (1998).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

M. P. Y. Desmulliez, B. S. Wherret, A. J. Waddie, J. F. Snowdon, J. A. B. Dines, “Performance analysis of self-electro-optic-effect-device-based (SEED-based) smart-pixel arrays used in data sorting,” Appl. Opt. 35, 6397–6415 (1996).
[CrossRef] [PubMed]

J. Taboury, J. M. Wang, P. Chavel, F. Devos, P. Garda, “Optical cellular processor architecture. 1. Principles,” Appl. Opt. 9, 1643–1650 (1988).
[CrossRef]

J. Taboury, J. M. Wang, P. Chavel, F. Devos, “Optical cellular processor architecture. 2: Illustration and system considerations,” Appl. Opt. 28, 3138–3147 (1989).
[CrossRef] [PubMed]

S. Lin, A. Grot, J. Luo, D. Psaltis, “GaAs optoelectronic neuron arrays,” Appl. Opt. 32, 1275–1288 (1992).
[CrossRef]

A. Kirk, T. Tabata, M. Ishikawa, “Design of an optoelectronic cellular processing system with a reconfigurable holographic interconnect,” Appl. Opt. 33, 1629–1639 (1994).
[CrossRef] [PubMed]

Electron. Lett.

B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
[CrossRef]

IEEE J. Quantum Electron.

A. L. Lentine, L. M. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamed smart pixel optical receivers,” IEEE J. Quantum Electron. 30, 1167–1171 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” IEEE J. Sel. Top. Quantum Electron. 2, 106–116 (1996).
[CrossRef]

IEEE J. Solid-State Circuits

A. Dupret, E. Belhaire, J. C. Rodier, Ph. Lalanne, D. Prévost, P. Garda, P. Chavel, “An optoelectronic CMOS circuit implementing a simulated annealing algorithm,” IEEE J. Solid-State Circuits 31, 1046–1050 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

K. W. Goosen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

IEEE Trans. Pattern Analy. Mach. Intell.

S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Analy. Mach. Intell. 6, 721–741 (1984).
[CrossRef]

Int. J. Opt. Comput.

M. Kuijk, P. Heremans, R. Vounckx, G. Borghs, “The double heterostructure optical thyristor in optical information processing applications,” Int. J. Opt. Comput. 2, 433–436 (1991).

Int. J. Optoelectron.

A. V. Krishnamoorthy, K. W. Goosen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAS/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).

J. Opt. A Pure Appl. Opt.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thryristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 267–279 (1999).
[CrossRef]

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A Pure Appl. Opt. 1, 267–271 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Microelectron. Eng.

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Fast and sensitive two-terminal double-heterojunction optical thyristors,” Microelectron. Eng. 19, 49–52 (1992).
[CrossRef]

Opt. Eng.

Ph. Lalanne, J. C. Rodier, P. Chavel, E. Belhaire, P. Garda, “Optoelectronic devices for Boltzmann machines and simulated annealing,” Opt. Eng. 32, 1904–1914 (1993).
[CrossRef]

Ph. Lalanne, E. Belhaire, J. C. Rodier, A. Dupret, P. Garda, P. Chavel, “Gaussian random number generation by differential detection of speckles,” Opt. Eng. 34, 1835–1837 (1995).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

D. A. B. Miller, “Quantum well self-electrooptic devices,” Opt. Quantum Electron. 22, 61–98 (1990).

Science

S. Kirpatrick, C. D. Gelatt, M. P. Vecchi, “Optimisation by simulated annealing,” Science 220, 671–680 (1982).
[CrossRef]

Signal. Proc.

P. Lalande, P. Bouthemy, “A statistical approach to the detection and tracking of moving objects in an image sequence,” Signal. Proc. 5, 947–950 (1990).

Other

P. Lalande, “Détection du mouvement dans les séquences d’images selon une approche markovienne; application à la robotique sous-marine,” Ph.D. dissertation (Université de Rennes I, Rennes, France, 1990).

A. Caplier, “Modèles markoviens de détection du mouvement dans les séquences d’images. Approches sptio-temporelle et mises en œuvre temps réel,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1995).

P. Chavel, Ph. Lalanne, “On parallel algorithms for optical image processors,” in Optical Computing: Proceedings of the International Conference, Heriot-Watt University, Edinburgh, UK, August 22–25 1994, B. S. Wherrett, ed. (Institute of Physics, London, 1995), pp. 11–16.

A. Cassinelli, P. Lalanne, P. Chavel, I. Glaser, “Demonstration of video-rate optoelectronic parallel processors for noise cleaning in binary images by simulated annealing,” in Optical Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, Proc. SPIE3490, 163–166, Bellingham, (1998).

P. Chavel, A. Cassinelli, I. Glaser, “Optoelectronic cellular automata for video real time vision,” in Optics in Computing 2000, R. A. Lessard, T. Galstian, Proc. SPIE4089, 374–381 (2000).

A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings of the Tenth International Optical Computing Conference, S. Horwitz, ed. (IEEE Computer Society and International Optical Conference, New York, 1983), pp. 13–17.
[CrossRef]

P. Chavel, Ph. Lalanne, J. C. Rodier, “Optoelectronic stochastic processor arrays: demonstration of video rate simulated annealing noise cleaning operation,” in Proceedings of the Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI) (IEEE Computer Society, Los Alamitos, Calif., 1996), 158–167.

D. E. Knuth, “Random numbers,” in The Art of Computer Programming, (Addison-Wesley, Reading, Mass., 1969), Vol. 2, Chap. 3, pp. 9–22.

G. Prémont, “Photothyristors PnpN et recuit simulé optoélectronique pour la vision bas-niveau,” Thèse de l’université de Paris-Sud, Orsay, France (1999).

J. P. Dérutin, B. Besserer, T. Tixier, A. Klikel, “A parallel vision machine: transvision,” in Proceedings of Computer Architecture for Machine Perception, B. Zavidovique, P. L. Wendel, eds. (Paris, 16–18 Dec. 1991), pp. 241–251.

C. Dumontier, “Etude et mise en œuvre temps réel d’un algorithme de detection du mouvement par approche markovienne,” Ph.D. dissertation (Institut National Polytechnique de Grenoble, Grenoble, France, 1996).

M. P. Y. Desmulliez, B. S. Wherrett, “Trends in hybrid-VLSI optoelectronics for optical information processing,” in Optical Interconnections and Computing, M. Lapp, A. Hasegawa, B. J. Snavely, H. Starle, A. C. Tam, T. Wilson, eds. (Oxford U. Press, Oxford Series of Optical and Imaging Sciences, London) (to be published).

I. Seyd-Darwish, “Etude et réalisation d’un automate cellulaire optoélectronique parallèle,” Ph.D. dissertation (de l’Université de Paris Sud, Orsay, France, 1991).

Advanced research initiative in microelectronics, IST programme for Future and Emerging Technologies: Technology roadmap for Optoelectronic Interconnects for Integrated Circuits (MEL-ARI OPTO), published by the European Commission with no author name, (September1999). http://www.cordis.lu/esprit/src/melari.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

PE coloring in the case of a four- or eight-nearest-neighbor-interconnection pattern. Interlaced color domains must evolve consecutively, but all pixels in one color domain can evolve in parallel; hence parallelism scales inversely with the number of colors (two and four in the left and right examples, respectively).

Fig. 2
Fig. 2

Underlying principles of the simplified motion-detection algorithm. The heavy circles represents two consecutive locations of a moving object. Motion information is exclusively provided to the OSPP through the observed binary field ô(t).

Fig. 3
Fig. 3

Test of the simplified motion-detection algorithm implemented on the (nonmonolithic) optically interconnected OSPP prototype. A Dammann grating is in charge of an eight-nearest-neighbor-optical-interconnection pattern. This first prototype relies on a low-resolution, 24 × 24-pixel large Si-CMOS chip (SPIE600). Gray levels, on a scale of 0 through 255: background = 180; object = 220. Gaussian noise, σ = 10. Object speed, (1, ±2) pixel/frame. Size: image, 24 × 24 pixels; moving object, 6 × 5 pixels.

Fig. 4
Fig. 4

Schematic overview of the nonmonolithic OSPP demonstrator, including an optical input arm (folded), an optical convolution setup (unfolded arm), and an optical random-number generator (only the exit of the speckle fiber is represented). Polarizing beam splitters are used to increase the overall system throughput.

Fig. 5
Fig. 5

View of the complete setup that uses the SPIE600 chip. It includes a CCD camera for alignment purposes and continuous monitoring of system operation. Approximate dimensions are 35 cm × 21 cm × 14 cm (the random-number-generator hardware is not shown in the picture).

Fig. 6
Fig. 6

Block diagram of a single OSPP smart pixel (a 1, a 2, a 3, e, and b are one-bit memory registers, loaded in parallel over the rows).

Fig. 7
Fig. 7

Optical architecture of the monolithic OSPP. An array illuminator is used to generate a reading bunch of beams to be projected onto the PE modulators. The laser source operates in a quasi-cw mode. PBSC, polarizing beam-splitter cube; CGH, computer-generated hologram; AI, array illuminator; SPA, smart-pixel array.

Fig. 8
Fig. 8

Light from the (global) laser source to a particular p-i-n photodetector—let us say of PE(i)—goes first through the array illuminator (AI), reflects on every neighboring modulator—i.e., modulators of PE(j), with jN(i)—and is diffracted by the computer-generated hologram (CGH) before arriving at the destination.

Fig. 9
Fig. 9

Single-stage diode-clamped receiver. Pulse duration τ o is 3 or 6 ns, for a minimum (detectable) differential optical power Δp min of 52 or 24 µW, respectively.

Fig. 10
Fig. 10

Chronogram of two neighboring PEs in the case of a two-color array and corresponding processing latency times.

Fig. 11
Fig. 11

Optical power requirement versus clock frequency. Solid curve, the 12-nearest-neighbor-optically-interconnected array; dashed curve, 8-nearest-neighbor-optically-interconnected array; dotted curve, 4-nearest-neighbor-optically-interconnected array.

Fig. 12
Fig. 12

Optical bandwidth improvement of the OSPP demonstrator and comparison with other SPA-based prototypes (CITR/95,32 HERE/98,33 SPARCL/95,34 BS/98,35 AT&T/91,36 and AT&T/9337). Optical hardware module 2000/2007 represents perspectives for the CMOS-SEED systems, on the basis of foreseeable improvements in SPA hybrid CMOS-SEED technology38 and by use of a compact, rugged optical hardware module as described in Ref. 39. We assumed a 5-SPA system with 2× diffractive optical elements that interconnect adjacent arrays (an architecture equivalent to that of the AT&T/93 demonstrator). FLC/IC, integrated-circuit-ferroelectric-liquid-crystal modulator; MSM, metal–semiconductor–metal detector; S-SEED, symmetric-SEED37; FET-SEED, field-effect-transistor-SEED.

Fig. 13
Fig. 13

Interconnection-density improvements for the monolithic OSPP demonstrator.

Tables (2)

Tables Icon

Table 1 OSPP Performance As a Function of the SPA Technologya

Tables Icon

Table 2 Hybrid 32 × 16 OSPP Expected Performancesb

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Fs, t=βSrNs2er, t-1 =FS+βC2ex, t-1-12oˆs, t-1 =FC.
Pres, t=1=11+exp-Fs, t/T.
pmj=ηS-PEPtot,
pdONi=ηPE-PERONpm,
psOFFi=pdONiC=ηPE-PERONC pm.
pmin=2pdON-pdOFF=2pdON1-1C=2ηS-PEηPE-PERON1-1CPtot.
pminτoΔEmin=1S CinΔVin,
TIN=34CinΔVinSpmin+2CoutΔVloggmΔVin,
TOUT=2 CexVoΔItrans,
TPE=TIN+Telec+TOUT,
TPE+TflightTclock=1Fclock,
Popt=38ΔEminηS-PEηPE-PERON1-1C1Fc-NCFMAX-1Ptot,
FMAX=1Tamp+Telec+TOUT+Tvol83 MHz

Metrics