Abstract

Transmission of one-dimensional spatial phase information by low-coherence light through a single-mode optical fiber is experimentally demonstrated by use of space–time conversion at a 4-f Fourier coherence function shaper and time–space conversion with spectral holography. The dispersion during the fiber propagation can be automatically compensated for with spectral holography. However, space–time coupling caused by the transmitter limits the capacity of information transmittable with one coherence function shaping. A significant advantage in the space–time–space conversion with low-coherence light is that an infinite number of signal channels can be multiplexed with a newly invented delay-time division scheme, which can extend this analog transmission to two-dimensional spatial phase patterns.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.
  2. T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.
  3. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
    [CrossRef] [PubMed]
  4. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
    [CrossRef] [PubMed]
  5. P. C. Sun, Y. T. Mazurenko, Y. Fainman, “Real-time one-dimensional coherent imaging through single-mode fibers by space-time conversion processors,” Opt. Lett. 22, 1861–1863 (1997).
    [CrossRef]
  6. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
    [CrossRef]
  7. A. M. Weiner, J. P. Heritage, J. H. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
    [CrossRef] [PubMed]
  8. T. C. Weinacht, J. Ahn, P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
    [CrossRef]
  9. H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
    [CrossRef]
  10. D. M. Marom, P. C. Sun, Y. Fainman, “Analysis of spatial–temporal converters for all-optical communication links,” Appl. Opt. 37, 2858–2868 (1998).
    [CrossRef]
  11. V. Binjrajka, C.-C. Chang, A. W. R. Emanuel, D. E. Leaird, A. M. Weiner, “Pulse shaping of incoherent light by use of a liquid-crystal modulator array,” Opt. Lett. 21, 1756–1758 (1996).
    [CrossRef] [PubMed]
  12. Y. Teramura, K. Suzuki, M. Suzuki, F. Kannari, “Low-coherence interferometry with synthesis of coherence function,” Appl. Opt. 38, 5974–5980 (1999).
    [CrossRef]
  13. Y. Teramura, A. Shirakawa, F. Kannari, “Spatial phase information transmission through single-mode fibers by coherence function shaping of the low coherent light,” Jpn. J. Appl. Phys. 38, L1416–L1418 (1999).
    [CrossRef]
  14. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
    [CrossRef]
  15. M. M. Wefers, K. A. Nelson, “Space–time profiles of shaped ultrafast optical wave-forms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
    [CrossRef]
  16. D. Meshulach, D. Yelin, Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997).
    [CrossRef]
  17. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  18. R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access,” J. Lightwave Technol. 13, 1826–1837 (1995).
    [CrossRef]

1999

T. C. Weinacht, J. Ahn, P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Y. Teramura, K. Suzuki, M. Suzuki, F. Kannari, “Low-coherence interferometry with synthesis of coherence function,” Appl. Opt. 38, 5974–5980 (1999).
[CrossRef]

Y. Teramura, A. Shirakawa, F. Kannari, “Spatial phase information transmission through single-mode fibers by coherence function shaping of the low coherent light,” Jpn. J. Appl. Phys. 38, L1416–L1418 (1999).
[CrossRef]

1998

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

D. M. Marom, P. C. Sun, Y. Fainman, “Analysis of spatial–temporal converters for all-optical communication links,” Appl. Opt. 37, 2858–2868 (1998).
[CrossRef]

1997

1996

1995

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef] [PubMed]

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access,” J. Lightwave Technol. 13, 1826–1837 (1995).
[CrossRef]

1994

1991

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
[CrossRef]

1988

1982

Ahn, J.

T. C. Weinacht, J. Ahn, P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Binjrajka, V.

Bucksbaum, P. H.

T. C. Weinacht, J. Ahn, P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Cabot, S.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Chang, C.-C.

Chang, W. S. C.

Chen, Z. J.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Chiu, T. H.

Emanuel, A. W. R.

Fainman, Y.

Feder, K. S.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Fujii, K.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Fukuchi, K.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Glass, A. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
[CrossRef]

Griffin, R. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access,” J. Lightwave Technol. 13, 1826–1837 (1995).
[CrossRef]

Grüner-Nielsen, L.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Hansen, P. B.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Harumoto, M.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Heritage, J. P.

Hsu, L.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Ina, H.

Inada, Y.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Inoue, Y.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

Ito, T.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Jackson, D. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access,” J. Lightwave Technol. 13, 1826–1837 (1995).
[CrossRef]

Judy, A. F.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Kakui, M.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Kan, C. K.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Kannari, F.

Y. Teramura, A. Shirakawa, F. Kannari, “Spatial phase information transmission through single-mode fibers by coherence function shaping of the low coherent light,” Jpn. J. Appl. Phys. 38, L1416–L1418 (1999).
[CrossRef]

Y. Teramura, K. Suzuki, M. Suzuki, F. Kannari, “Low-coherence interferometry with synthesis of coherence function,” Appl. Opt. 38, 5974–5980 (1999).
[CrossRef]

Kobayashi, S.

Kurokawa, T.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

Leaird, D. E.

Li, M.

Marom, D. M.

Mazurenko, Y. T.

Meshulach, D.

Naganuma, K.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

Nelson, K. A.

M. M. Wefers, K. A. Nelson, “Space–time profiles of shaped ultrafast optical wave-forms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
[CrossRef]

Nelson, L. E.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Nielsen, T. N.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Nuss, M. C.

Okamoto, K.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

Olson, D. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
[CrossRef]

Park, J. H.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Park, S. Y.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Partovi, A.

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
[CrossRef]

Peckham, D. W.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Rottwitt, K.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Salehi, J. H.

Sampson, D. D.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access,” J. Lightwave Technol. 13, 1826–1837 (1995).
[CrossRef]

Shirakawa, A.

Y. Teramura, A. Shirakawa, F. Kannari, “Spatial phase information transmission through single-mode fibers by coherence function shaping of the low coherent light,” Jpn. J. Appl. Phys. 38, L1416–L1418 (1999).
[CrossRef]

Short, K. T.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
[CrossRef]

Silberberg, Y.

Stentz, A. J.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Strasser, T. A.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Stulz, S.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Sulhoff, J.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Sun, P. C.

Suzuki, K.

Suzuki, M.

Takeda, M.

Takenouchi, H.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

Teramura, Y.

Y. Teramura, A. Shirakawa, F. Kannari, “Spatial phase information transmission through single-mode fibers by coherence function shaping of the low coherent light,” Jpn. J. Appl. Phys. 38, L1416–L1418 (1999).
[CrossRef]

Y. Teramura, K. Suzuki, M. Suzuki, F. Kannari, “Low-coherence interferometry with synthesis of coherence function,” Appl. Opt. 38, 5974–5980 (1999).
[CrossRef]

Tsuda, H.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

Tsuzaki, T.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Vengsarkar, D. S.

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

Wefers, M. M.

M. M. Wefers, K. A. Nelson, “Space–time profiles of shaped ultrafast optical wave-forms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
[CrossRef]

Weinacht, T. C.

T. C. Weinacht, J. Ahn, P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Weiner, A. M.

Yelin, D.

Yu, P. K. L.

Zydzik, G. J.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, K. T. Short, “High sensitivity optical image processing device based on CdZnTe/ZnTe multiple quantum well structures,” Appl. Phys. Lett. 59, 1832–1834 (1991).
[CrossRef]

Electron. Lett.

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Wefers, K. A. Nelson, “Space–time profiles of shaped ultrafast optical wave-forms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
[CrossRef]

J. Lightwave Technol.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Coherence coding for photonic code-division multiple access,” J. Lightwave Technol. 13, 1826–1837 (1995).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Teramura, A. Shirakawa, F. Kannari, “Spatial phase information transmission through single-mode fibers by coherence function shaping of the low coherent light,” Jpn. J. Appl. Phys. 38, L1416–L1418 (1999).
[CrossRef]

Nature

T. C. Weinacht, J. Ahn, P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[CrossRef]

Opt. Lett.

Prog. Quantum Electron.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Other

T. N. Nielsen, A. J. Stentz, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, T. A. Strasser, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, J. Sulhoff, S. Y. Park, L. E. Nelson, L. Grüner-Nielsen, “3.28-Tb/s (82 × 40 Gb/s) transmission over 3 × 100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium-doped inline amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD23.

T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, K. Fujii, “3.2 Tb/s-1,500 km WDM transmission experiment using 64 nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference, Vol. 37 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), PD24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic setup of the transmission of the spatial phase information by the coherence function synthesis. G, grating; L, lens; BS, beam splitter; CR, corner reflector.

Fig. 2
Fig. 2

Schematic of the reconstructed coherence function against the delay of the receiver τ r .

Fig. 3
Fig. 3

(a) Power spectrum of the SLD by use of the experiment and the applied mask selected from the phase levels of 64 randomly. (b) Simulated results of the intensity (bold curve) and phase (solid curve) of the SDF at the output facet of the optical fiber and (c) at the spectral hologram of the receiver.

Fig. 4
Fig. 4

Simulated result of the coherence function when the mask shown in Fig. 3(a) is applied. The result (a) at the end of the transmitter and (b) at the output facet of the optical fiber. (c) The reconstructed coherence function from the recorded spectral hologram plane of the receiver.

Fig. 5
Fig. 5

(a) Target function used to design the kinoform applied to the SLM. (b) Simulated result of the diffraction image generated from the desired kinoform. (c) Experimental result of the diffraction image generated from the spectral hologram at the receiver.

Fig. 6
Fig. 6

(a) Initial power spectrum measured by the spectrometer and mask function applied to the SLM. (b) Experimental results measured by the spatial spectral interferometer. (c) Simulated results of the SDF at a holographic plane of the receiver.

Fig. 7
Fig. 7

Coherence function of (a) simulated results and (b) experimental results at the transmitter, and (c) simulated results and (d) experimental results of the output beam from the optical fiber.

Fig. 8
Fig. 8

Experimental setup of the measurement of the SDF at the receiver with use of the spatial spectral interferometer.

Fig. 9
Fig. 9

Schematic of the DDM system. C, coupler.

Fig. 10
Fig. 10

Schematic of the reconstructed coherence function for the DDM against the delay of the arbitrary receiver τ r .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Esω=MωEinω,
Erω=Einω.
Γˆsrω=EsωEr*ω=Mω|Einω|2.
Γsrτ=12π-+ Γˆsrωexpiωτdω=estett-τ.
EBS2ω=Esωexp-iωτt+Erω.
ER1ω=12ΨEsωexp-iωτt+Erω,
ER2ω=12ΨEsωexp-iωτt+τr+Erωexpiωτr.
ΓˆRω=ER1ωER2*ω=|Ψ|24EsωEs*ωexpiωτr+ErωEr*ωexpiωτr+EsωEr*ωexpiωτr-τt+ErωEs*ωexpiωτr+τt=|Ψ|24Γˆssωexp-iωτr+Γˆrrωexp-iωτr+Γˆsrωexp-iωτr-τt+Γˆrsωexp-iωτr+τt.
ΓRτ=12π-+ ΓˆRωdω=|ψ|24Γssτr+Γrrτr+Γsrτr-τt+Γrsτr+τt,
|τt|>τν
EC2ω=Erω+i Eiωexp-iωτi.
Γˆω=|Ψ|24m2Erω+i Eiωexp-iωτi×{Erωexp-iωτr+i Eiωexp-iωτi+τr}*=|Ψ|24m2Γˆrrωexpiωτr+ij Γˆijω×expiωτr-τi+τj+i Γˆirωexpiωτr-τi+i Γˆriωexpiωτr+τi.
Γτ=|ψ|24m2Γrrτr+ij Γijτr-τi+τj+i Γirτr-τi+i Γriτr+τi.
|τ0|>τν.
τi=2i+1τ0.

Metrics