Abstract

In contrast to spectroscopy at longer wavelengths, typical attributes of ultraviolet resonance Raman (UVRR) spectroscopy of biologic tissue are higher absorption coefficient, μ, and higher photobleaching rate, κ. This study was aimed at measuring μ and κ during UVRR spectroscopy of human colon tissue at 251 nm. μ was used to estimate the penetration depth of the excitation light; κ was used to predict the rate of signal decrease that was due to photobleaching as a function of laser fluence and tissue thickness. The fitting of the equations through description of a three-state transition model to experimental data that consisted of a purine UVRR signal gave μ = 0.0169 ± 0.0023 µm-1 and κ = 0.572 ± 0.168 (mJ/µm2)-1. κ remained independent of power P for P < 1 mW, but higher power values resulted in a higher photobleaching rate. As predicted by the model, signal decrease that was due to photobleaching was slower as sample thickness was increased.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Sureau, L. Chinsky, C. Amirand, J. P. Ballini, M. Dusquesne, A. Laigle, P. Y. Turpin, P. Vigny, “An ultraviolet micro-Raman spectrometer: resonance Raman spectroscopy within single cells,” Appl. Spectrosc. 44, 1047–1051 (1990).
    [CrossRef]
  2. W. H. Nelson, R. Manoharan, J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
    [CrossRef]
  3. S. Chadha, W. H. Nelson, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64, 3088–3093 (1993).
    [CrossRef]
  4. R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).
  5. V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, S. A. Asher, “UV Raman microspectroscopy: spectral and spatial selectivity with sensitivity and simplicity,” Appl. Spectrosc. 51, 81–86 (1997).
    [CrossRef]
  6. Y. Yazdi, N. Ramanujam, R. Lotan, M. M. Follen, W. Hittelman, R. Richards-Kortum, “Resonance Raman spectroscopy at 257 nm excitation of normal and malignant cultured breast and cervical cells,” Appl. Spectrosc. 53, 82–85 (1999).
    [CrossRef]
  7. N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
    [PubMed]
  8. N. N. Boustany, R. Manoharan, R. R. Dasari, M. S. Feld, “Ultraviolet Raman spectroscopy of bulk and microscopic colon tissue,” Appl. Spectrosc. 54, 24–30 (2000).
    [CrossRef]
  9. M. H. Patrick, R. O. Rahn, “Photochemistry of DNA and polynucleotides: photoproducts,” in Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang, ed. (Academic, New York, 1976), Vol. 2.
    [CrossRef]
  10. D. Strommen, K. Nakamoto, Laboratory Raman Spectroscopy (Wiley, New York, 1984), pp. 115, 118.
  11. G. Dellepiane, J. Overend, “Vibrational spectra and assignment of acetone, ααα acetone-d3 and acetone-d6,” Spectrochim. Acta 22, 593–614 (1966).
    [CrossRef]
  12. S. T. Wollman, P. W. Bohn, “Evaluation of polynomial fitting functions for use with CCD arrays in Raman spectroscopy,” Appl. Spectrosc. 47, 125–126 (1993).
    [CrossRef]
  13. W. H. Press, S. A. Teulosky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).
  14. G. H. Pettit, M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt. 35, 3386–3391 (1996).
    [CrossRef] [PubMed]
  15. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
    [CrossRef] [PubMed]
  16. J. Raunest, H-J. Schwarzmaier, “Optical properties of human articular tissue as implication for a selective laser application in arthroscopic surgery,” Lasers Surg. Med. 16, 253–261 (1995).
    [CrossRef] [PubMed]
  17. V. V. Tuchin, S. R. Utz, I. V. Yarolavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
    [CrossRef]
  18. M. A. Everett, E. Yeargers, R. M. Sayre, R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
    [CrossRef] [PubMed]
  19. J. R. Loofbourow, B. S. Gould, I. W. Sizer, “Studies on the ultraviolet absorption spectra of collagen,” Arch. Biochem. 22, 406–411 (1949).
    [PubMed]
  20. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [CrossRef]
  21. E. Chan, T. Menovsky, A. J. Welch, “Effect of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
    [CrossRef] [PubMed]
  22. R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
    [CrossRef]
  23. G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
    [CrossRef]
  24. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  25. J. M. Schmitt, A. Knuttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [CrossRef] [PubMed]
  26. G. G. Gurzadyan, R. K. Ispiryan, K. Sh. Voskanyan, “Two-quantum photoprocesses in DNA under picosecond laser UV irradiation at 216 and 270 nm,” J. Photochem. Photobiol. B 11, 269–275 (1991).
    [CrossRef] [PubMed]
  27. D. N. Nikogosyan, D. A. Angelov, A. A. Oraevsky, “Determination of parameters of excited states of DNA and RNA bases by laser UV photolysis,” Photochem. Photobiol. 35, 627–635 (1982).
    [CrossRef] [PubMed]
  28. N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).
  29. J. R. Taylor, An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, Calif., 1982).

2000 (1)

1999 (2)

Y. Yazdi, N. Ramanujam, R. Lotan, M. M. Follen, W. Hittelman, R. Richards-Kortum, “Resonance Raman spectroscopy at 257 nm excitation of normal and malignant cultured breast and cervical cells,” Appl. Spectrosc. 53, 82–85 (1999).
[CrossRef]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
[PubMed]

1997 (1)

1996 (2)

1995 (2)

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

J. Raunest, H-J. Schwarzmaier, “Optical properties of human articular tissue as implication for a selective laser application in arthroscopic surgery,” Lasers Surg. Med. 16, 253–261 (1995).
[CrossRef] [PubMed]

1994 (3)

V. V. Tuchin, S. R. Utz, I. V. Yarolavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

1993 (3)

1992 (1)

W. H. Nelson, R. Manoharan, J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[CrossRef]

1991 (1)

G. G. Gurzadyan, R. K. Ispiryan, K. Sh. Voskanyan, “Two-quantum photoprocesses in DNA under picosecond laser UV irradiation at 216 and 270 nm,” J. Photochem. Photobiol. B 11, 269–275 (1991).
[CrossRef] [PubMed]

1990 (3)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

F. Sureau, L. Chinsky, C. Amirand, J. P. Ballini, M. Dusquesne, A. Laigle, P. Y. Turpin, P. Vigny, “An ultraviolet micro-Raman spectrometer: resonance Raman spectroscopy within single cells,” Appl. Spectrosc. 44, 1047–1051 (1990).
[CrossRef]

1985 (1)

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

1982 (1)

D. N. Nikogosyan, D. A. Angelov, A. A. Oraevsky, “Determination of parameters of excited states of DNA and RNA bases by laser UV photolysis,” Photochem. Photobiol. 35, 627–635 (1982).
[CrossRef] [PubMed]

1966 (2)

M. A. Everett, E. Yeargers, R. M. Sayre, R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
[CrossRef] [PubMed]

G. Dellepiane, J. Overend, “Vibrational spectra and assignment of acetone, ααα acetone-d3 and acetone-d6,” Spectrochim. Acta 22, 593–614 (1966).
[CrossRef]

1949 (1)

J. R. Loofbourow, B. S. Gould, I. W. Sizer, “Studies on the ultraviolet absorption spectra of collagen,” Arch. Biochem. 22, 406–411 (1949).
[PubMed]

Adler, C. M.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Amirand, C.

Angelov, D. A.

D. N. Nikogosyan, D. A. Angelov, A. A. Oraevsky, “Determination of parameters of excited states of DNA and RNA bases by laser UV photolysis,” Photochem. Photobiol. 35, 627–635 (1982).
[CrossRef] [PubMed]

Arendt, J. T.

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

Asher, S. A.

Ballini, J. P.

Bohn, P. W.

Bonner, R. F.

Bormett, R. W.

Bottiroli, G.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Boustany, N. N.

N. N. Boustany, R. Manoharan, R. R. Dasari, M. S. Feld, “Ultraviolet Raman spectroscopy of bulk and microscopic colon tissue,” Appl. Spectrosc. 54, 24–30 (2000).
[CrossRef]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
[PubMed]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).

Chadha, S.

S. Chadha, W. H. Nelson, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64, 3088–3093 (1993).
[CrossRef]

Chan, E.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Chinsky, L.

Cothren, R. M.

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

Crawford, J. M.

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
[PubMed]

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).

Croce, A. C.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Dal Fante, M.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Dasari, R.

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

Dasari, R. R.

N. N. Boustany, R. Manoharan, R. R. Dasari, M. S. Feld, “Ultraviolet Raman spectroscopy of bulk and microscopic colon tissue,” Appl. Spectrosc. 54, 24–30 (2000).
[CrossRef]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
[PubMed]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).

Dehm, E. J.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Dellepiane, G.

G. Dellepiane, J. Overend, “Vibrational spectra and assignment of acetone, ααα acetone-d3 and acetone-d6,” Spectrochim. Acta 22, 593–614 (1966).
[CrossRef]

Deutsch, T. F.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Di Palma, S.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Dusquesne, M.

Ediger, M. N.

Everett, M. A.

M. A. Everett, E. Yeargers, R. M. Sayre, R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
[CrossRef] [PubMed]

Feld, M. S.

N. N. Boustany, R. Manoharan, R. R. Dasari, M. S. Feld, “Ultraviolet Raman spectroscopy of bulk and microscopic colon tissue,” Appl. Spectrosc. 54, 24–30 (2000).
[CrossRef]

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).

Feld, M.S.

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
[PubMed]

Flannery, B. P.

W. H. Press, S. A. Teulosky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Follen, M. M.

Fumagalli, S.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Gould, B. S.

J. R. Loofbourow, B. S. Gould, I. W. Sizer, “Studies on the ultraviolet absorption spectra of collagen,” Arch. Biochem. 22, 406–411 (1949).
[PubMed]

Gurzadyan, G. G.

G. G. Gurzadyan, R. K. Ispiryan, K. Sh. Voskanyan, “Two-quantum photoprocesses in DNA under picosecond laser UV irradiation at 216 and 270 nm,” J. Photochem. Photobiol. B 11, 269–275 (1991).
[CrossRef] [PubMed]

Hillenkamp, F.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Hittelman, W.

Ispiryan, R. K.

G. G. Gurzadyan, R. K. Ispiryan, K. Sh. Voskanyan, “Two-quantum photoprocesses in DNA under picosecond laser UV irradiation at 216 and 270 nm,” J. Photochem. Photobiol. B 11, 269–275 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

Knuttel, A.

Laigle, A.

Loofbourow, J. R.

J. R. Loofbourow, B. S. Gould, I. W. Sizer, “Studies on the ultraviolet absorption spectra of collagen,” Arch. Biochem. 22, 406–411 (1949).
[PubMed]

Lotan, R.

Manoharan, R.

N. N. Boustany, R. Manoharan, R. R. Dasari, M. S. Feld, “Ultraviolet Raman spectroscopy of bulk and microscopic colon tissue,” Appl. Spectrosc. 54, 24–30 (2000).
[CrossRef]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
[PubMed]

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

W. H. Nelson, R. Manoharan, J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[CrossRef]

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).

Marchesini, R.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Menovsky, T.

Munro, C. H.

Nakamoto, K.

D. Strommen, K. Nakamoto, Laboratory Raman Spectroscopy (Wiley, New York, 1984), pp. 115, 118.

Nelson, W. H.

S. Chadha, W. H. Nelson, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64, 3088–3093 (1993).
[CrossRef]

W. H. Nelson, R. Manoharan, J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, D. A. Angelov, A. A. Oraevsky, “Determination of parameters of excited states of DNA and RNA bases by laser UV photolysis,” Photochem. Photobiol. 35, 627–635 (1982).
[CrossRef] [PubMed]

Olson, R. L.

M. A. Everett, E. Yeargers, R. M. Sayre, R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
[CrossRef] [PubMed]

Oraevsky, A. A.

D. N. Nikogosyan, D. A. Angelov, A. A. Oraevsky, “Determination of parameters of excited states of DNA and RNA bases by laser UV photolysis,” Photochem. Photobiol. 35, 627–635 (1982).
[CrossRef] [PubMed]

Overend, J.

G. Dellepiane, J. Overend, “Vibrational spectra and assignment of acetone, ααα acetone-d3 and acetone-d6,” Spectrochim. Acta 22, 593–614 (1966).
[CrossRef]

Pajcini, V.

Patrick, M. H.

M. H. Patrick, R. O. Rahn, “Photochemistry of DNA and polynucleotides: photoproducts,” in Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang, ed. (Academic, New York, 1976), Vol. 2.
[CrossRef]

Pettit, G. H.

Pignoli, E.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teulosky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Puliafito, C. A.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Rahn, R. O.

M. H. Patrick, R. O. Rahn, “Photochemistry of DNA and polynucleotides: photoproducts,” in Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang, ed. (Academic, New York, 1976), Vol. 2.
[CrossRef]

Ramanujam, N.

Raunest, J.

J. Raunest, H-J. Schwarzmaier, “Optical properties of human articular tissue as implication for a selective laser application in arthroscopic surgery,” Lasers Surg. Med. 16, 253–261 (1995).
[CrossRef] [PubMed]

Rava, R. P.

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

Richards-Kortum, R.

Sayre, R. M.

M. A. Everett, E. Yeargers, R. M. Sayre, R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
[CrossRef] [PubMed]

Schmitt, J. M.

Schwarzmaier, H-J.

J. Raunest, H-J. Schwarzmaier, “Optical properties of human articular tissue as implication for a selective laser application in arthroscopic surgery,” Lasers Surg. Med. 16, 253–261 (1995).
[CrossRef] [PubMed]

Sichirollo, A. E.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Singer, S. S.

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

Sizer, I. W.

J. R. Loofbourow, B. S. Gould, I. W. Sizer, “Studies on the ultraviolet absorption spectra of collagen,” Arch. Biochem. 22, 406–411 (1949).
[PubMed]

Sperry, J. F.

W. H. Nelson, R. Manoharan, J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[CrossRef]

Spinelli, P.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Steinert, R. F.

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Strommen, D.

D. Strommen, K. Nakamoto, Laboratory Raman Spectroscopy (Wiley, New York, 1984), pp. 115, 118.

Sureau, F.

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, Calif., 1982).

Teulosky, S. A.

W. H. Press, S. A. Teulosky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Tomatis, S.

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Tuchin, V. V.

V. V. Tuchin, S. R. Utz, I. V. Yarolavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

Turpin, P. Y.

Utz, S. R.

V. V. Tuchin, S. R. Utz, I. V. Yarolavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

Van Dam, J.

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teulosky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

Vigny, P.

Voskanyan, K. Sh.

G. G. Gurzadyan, R. K. Ispiryan, K. Sh. Voskanyan, “Two-quantum photoprocesses in DNA under picosecond laser UV irradiation at 216 and 270 nm,” J. Photochem. Photobiol. B 11, 269–275 (1991).
[CrossRef] [PubMed]

Wang, Y.

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

Welch, A. J.

E. Chan, T. Menovsky, A. J. Welch, “Effect of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

Witkowski, R. E.

Wollman, S. T.

Wu, J.

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

Yarolavsky, I. V.

V. V. Tuchin, S. R. Utz, I. V. Yarolavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

Yazdi, Y.

Yeargers, E.

M. A. Everett, E. Yeargers, R. M. Sayre, R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
[CrossRef] [PubMed]

Zonios, G. L.

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (5)

Appl. Spectrosc. Rev. (1)

W. H. Nelson, R. Manoharan, J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[CrossRef]

Arch. Biochem. (1)

J. R. Loofbourow, B. S. Gould, I. W. Sizer, “Studies on the ultraviolet absorption spectra of collagen,” Arch. Biochem. 22, 406–411 (1949).
[PubMed]

IEEE J. Quantum Electron. (2)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

G. L. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1995).
[CrossRef]

J. Photochem. Photobiol. B (1)

G. G. Gurzadyan, R. K. Ispiryan, K. Sh. Voskanyan, “Two-quantum photoprocesses in DNA under picosecond laser UV irradiation at 216 and 270 nm,” J. Photochem. Photobiol. B 11, 269–275 (1991).
[CrossRef] [PubMed]

Lab. Invest. (1)

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M.S. Feld, “Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa with ultraviolet resonance Raman spectroscopy,” Lab. Invest. 79, 1201–1214 (1999).
[PubMed]

Lasers Life Sci. (1)

R. Manoharan, Y. Wang, R. Dasari, S. S. Singer, R. P. Rava, M. S. Feld, “Ultraviolet resonance Raman spectroscopy for detection of colon cancer,” Lasers Life Sci. 6, 1–11 (1994).

Lasers Surg. Med. (2)

J. Raunest, H-J. Schwarzmaier, “Optical properties of human articular tissue as implication for a selective laser application in arthroscopic surgery,” Lasers Surg. Med. 16, 253–261 (1995).
[CrossRef] [PubMed]

R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994).
[CrossRef]

Ophthalmology (1)

C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Adler, “Excimer laser ablation of the cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Opt. Eng. (1)

V. V. Tuchin, S. R. Utz, I. V. Yarolavsky, “Tissue optics, light distribution, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

Photochem. Photobiol. (2)

M. A. Everett, E. Yeargers, R. M. Sayre, R. L. Olson, “Penetration of epidermis by ultraviolet rays,” Photochem. Photobiol. 5, 533–542 (1966).
[CrossRef] [PubMed]

D. N. Nikogosyan, D. A. Angelov, A. A. Oraevsky, “Determination of parameters of excited states of DNA and RNA bases by laser UV photolysis,” Photochem. Photobiol. 35, 627–635 (1982).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. Chadha, W. H. Nelson, “Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells,” Rev. Sci. Instrum. 64, 3088–3093 (1993).
[CrossRef]

Spectrochim. Acta (1)

G. Dellepiane, J. Overend, “Vibrational spectra and assignment of acetone, ααα acetone-d3 and acetone-d6,” Spectrochim. Acta 22, 593–614 (1966).
[CrossRef]

Other (5)

M. H. Patrick, R. O. Rahn, “Photochemistry of DNA and polynucleotides: photoproducts,” in Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang, ed. (Academic, New York, 1976), Vol. 2.
[CrossRef]

D. Strommen, K. Nakamoto, Laboratory Raman Spectroscopy (Wiley, New York, 1984), pp. 115, 118.

W. H. Press, S. A. Teulosky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).

N. N. Boustany, J. M. Crawford, R. Manoharan, R. R. Dasari, M. S. Feld, “Effects of freeze-thaw and photobleaching on the ultraviolet Raman spectra of human colon biopsies,” Appl. Spectrosc. (to be published).

J. R. Taylor, An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, Calif., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy diagram showing the transitions of a model Raman-active species undergoing photochemistry. The ground-state Raman-active species is pumped to an excited state by absorption of an incident photon of energy ω i . The absorption coefficient is σ0. β1 and β2 represent the transition rates at which the excited species returns to the ground state and undergoes photochemistry, respectively. If the molecule returns to the ground state, the incident photon is scattered as a Raman photon with energy ω r . The overall transition probability κ from the ground state to the photoproduct state is given by Eq. (1).

Fig. 2
Fig. 2

Schematic of a model Raman-scattering tissue sample irradiated by a collimated laser beam. The tissue of thickness Z 0 and cross section A is assumed to be homogeneous with a uniform initial density of Raman scatterers n ro and a uniform density of absorbers n a . While the number of Raman scatterers decreases as photobleaching progresses, the density of absorbers in the tissue is assumed to remain constant. The Raman-scattering signal is collected in a 180° backscattering geometry. The large f/# of the excitation/collection lens ensures that the intensity of the excitation light is constant within a given cross section and that the Raman signal is collected equally from all cross sections.

Fig. 3
Fig. 3

Estimation of photobleaching rate κ. Purine signal data (filled circles) were plotted as a function of laser fluence Φ for the case of a 12-µm thin section [Z 0 ≪ 1/μ, I(z) ∼ constant = I 0]. Relation (13) was fitted to the data by a nonlinear fitting routine (solid line). The fit yielded κ = 0.572 ± 0.168 (mJ/µm2)-1. The error bars represent the standard deviation of the mean.

Fig. 4
Fig. 4

Estimation of attenuation coefficient μ by purine Raman signal measurement (panel A) and by absorption spectrophotometry (panel B). A, Purine Raman signal (filled circles) measured as a function of tissue thickness (Z 0); Equation (11) (Φ ∼ 0) was fitted to the data by a standard nonlinear fitting routine (solid curve). The fit yielded μ = 0.0169 ± 0.0023 µm-1. The error bars represent the standard deviation of the mean. B, Absorbance was measured and plotted as a function of tissue thickness. A straight line (solid line) was fitted to the data (filled circles), including the (0,0) point (no tissue present), by a least-squares-fitting routine. The fit yielded μ = 0.00160 ± 0.0025 µm-1. The coefficient of correlation was 0.82. The error bar, σ y shown on the graph, was estimated from the fit as σ y = [(1/N - 2)∑i = 1/N(y i -y fit)2(Ref. 29).

Fig. 5
Fig. 5

Normalized purine signal as a function of thickness (A) and fluence (B) for five different tissue sections. Purine signal measurements were normalized according to Eq. (15). The normalized signal predicted from Eq. (15) (dashed curves) is overlaid on the measured data (symbols). The error bars represent the ±95% confidence interval of the mean. Error bars are plotted in one direction for clarity. When only one measurement was acquired, no error bar is shown.

Fig. 6
Fig. 6

Photobleaching rate as a function of laser power. Plots of purine signal versus laser fluence are shown for three different excitation power levels: 2.15 (filled circles), 0.8 (open circles), and 0.275 mW (filled squares). Data were collected from different locations on a 100-µm-thick colon section. Error bars represent the 95% confidence interval of the mean.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

κ=σ0h¯ωiβ2β1+β2,
nrt=-κInr,
dIdz=-μI.
Iz=I0 exp-μz,
nrt, z=nro exp-κIt=nro exp-κI0 exp-μzt,
SRt=σr A 0Z0 Kznr(t, z)Izexp-μzdz,
SRt=σrK0A 1exp-μZ0 nrI0u2du-μu=σrK0A nroI0μ1exp-μZ0-u exp-κI0tudu=CRμ1exp-μZ0-u exp-κΦudu,
SRΦ=CRμκΦ2exp-κΦ exp-μZ0×κΦ exp-μZ0+1-exp-κΦκΦ+1,
nT=nro exp-κIt+nres.
STΦ=SRΦ+Cres2μ1-exp2μZ0SRΦ+Sres,
STΦ0=SRΦ0+Sres=CR+Cres2μ ×1-exp-2μZ0.
STΦ  =Sres.
STΦ|Z00CRZ0 exp-κΦ+CresZ0.
STΦ|Z0CRμκΦ21-exp-κΦ×κΦ+1+Cres2μ.
S¯Φ=STΦ-SresCR/μ.
1001-1-exp-κΦκΦ0.
Δt=100s STΦ|Z00 CRZ0κ1-exp-κI0Δt×exp-κΦ+Cresz0.

Metrics