Abstract

Measurement of the concentration of fluorescent compounds in turbid media is difficult because the absorption and multiple scattering of excitation and emission of light has a large effect on the detected fluorescence. For surface measurements with optical fibers we demonstrate by experiments and numerical simulation that this effect can be minimized by measurement of the fluorescence at one source–detector distance, the diffusely reflected excitation light at a second distance, and with the ratio of these two signals as an indicator of fluorophore concentration. For optical properties typical of soft tissue in the red and the near infrared the optimum performance is obtained by measurement of fluorescence at 0.65 mm and reflectance at 1.35 mm. This choice reduces the rms error in fluorophore concentration to 14.6% over a wide range of absorption and scattering coefficients.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
    [CrossRef] [PubMed]
  2. D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).
  3. R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
    [CrossRef] [PubMed]
  4. D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
    [CrossRef] [PubMed]
  5. J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).
  6. M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
    [CrossRef] [PubMed]
  7. R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
    [CrossRef] [PubMed]
  8. D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
    [CrossRef] [PubMed]
  9. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl. Opt. 31, 3585–3595 (1993).
    [CrossRef]
  10. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  11. W. R. Potter, T. S. Mang, “Photofrin II levels by in vivo fluorescence photometry,” in Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, eds. (Liss, New York, 1984), pp. 177–186.
  12. A. E. Profio, S. Xie, K.-H. Shu, “Diagnosis of tumors by fluorescence: quantification of photosensitizer concentration,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 12–18 (1990).
  13. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
    [CrossRef]
  14. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
    [CrossRef] [PubMed]
  15. D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001).
    [CrossRef] [PubMed]
  16. L. Lilge, C. O’Carroll, B. C. Wilson, “A solubilization technique for photosensitizer quantification in ex vivo tissue samples,” J. Photochem. Photobiol. B 39, 229–235 (1997).
    [CrossRef] [PubMed]
  17. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  18. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
    [CrossRef] [PubMed]
  19. M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation,” Appl. Opt. 39, 6508–6514 (2000).
    [CrossRef]

2001 (1)

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001).
[CrossRef] [PubMed]

2000 (1)

1998 (2)

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
[CrossRef]

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

1997 (3)

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

L. Lilge, C. O’Carroll, B. C. Wilson, “A solubilization technique for photosensitizer quantification in ex vivo tissue samples,” J. Photochem. Photobiol. B 39, 229–235 (1997).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

1996 (1)

D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

1995 (1)

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl. Opt. 31, 3585–3595 (1993).
[CrossRef]

1992 (1)

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

1991 (1)

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

1986 (1)

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Barnhill, M. A.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Beiner, L. A.

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Bigio, I. J.

Biolo, R.

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

Braichotte, D.

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Braichotte, D. R.

D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

Bugaj, J. E.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Burke, G.

Burleigh, B. D.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Canpolat, M.

Chow, Y. F. A.

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Dalton, B.

D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).

Deutsch, T. F.

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

Diamond, K. R.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Doiron, D. R.

D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).

Dorshow, R. B.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Duncan, J. R.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Dunn, J. B.

D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).

Farrell, T. J.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001).
[CrossRef] [PubMed]

Feld, M. S.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl. Opt. 31, 3585–3595 (1993).
[CrossRef]

Flotte, T. J.

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

Folli, S.

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Frazier, D. L.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Frisoli, J. K.

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

Garbo, G. M.

D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).

Glanzmann, T.

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Harb, W.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Hasan, T.

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

Hayward, J. E.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hyde, D. E.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001).
[CrossRef] [PubMed]

Jack, D. A.

Johnson, M. A.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Johnson, T. M.

Jones, W. B.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Jori, G.

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

Kennedy, J. C.

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Laplante, J-P.

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Lilge, L.

L. Lilge, C. O’Carroll, B. C. Wilson, “A solubilization technique for photosensitizer quantification in ex vivo tissue samples,” J. Photochem. Photobiol. B 39, 229–235 (1997).
[CrossRef] [PubMed]

Mang, T. S.

W. R. Potter, T. S. Mang, “Photofrin II levels by in vivo fluorescence photometry,” in Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, eds. (Liss, New York, 1984), pp. 177–186.

Miller, H. D.

Mitchell, W. L.

D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).

Monnier, P.

D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Mourant, J. R.

Nadeau, P.

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

O’Brien, S. F.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

O’Carroll, C.

L. Lilge, C. O’Carroll, B. C. Wilson, “A solubilization technique for photosensitizer quantification in ex vivo tissue samples,” J. Photochem. Photobiol. B 39, 229–235 (1997).
[CrossRef] [PubMed]

Overholt, B. F.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Panjehpour, M.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Patterson, M. S.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001).
[CrossRef] [PubMed]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

Pogue, B. W.

Potter, W. R.

W. R. Potter, T. S. Mang, “Photofrin II levels by in vivo fluorescence photometry,” in Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, eds. (Liss, New York, 1984), pp. 177–186.

Pottier, R.

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

Pottier, R. H.

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Profio, A. E.

A. E. Profio, S. Xie, K.-H. Shu, “Diagnosis of tumors by fluorescence: quantification of photosensitizer concentration,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 12–18 (1990).

Rava, R. P.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl. Opt. 31, 3585–3595 (1993).
[CrossRef]

Reddi, E.

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

Savary, J.-F.

D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Schomaker, K. T.

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

Shu, K.-H.

A. E. Profio, S. Xie, K.-H. Shu, “Diagnosis of tumors by fluorescence: quantification of photosensitizer concentration,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 12–18 (1990).

Sneed, R. E.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Truscott, T. G.

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Tudor, E. G.

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

van den Bergh, H.

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

van den Bergh, H. E.

D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

Wagnieres, G.

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Warner, J. A.

D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).

Weagle, G.

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

Weersink, R. A.

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

Westermann, P.

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Wilson, B. C.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001).
[CrossRef] [PubMed]

L. Lilge, C. O’Carroll, B. C. Wilson, “A solubilization technique for photosensitizer quantification in ex vivo tissue samples,” J. Photochem. Photobiol. B 39, 229–235 (1997).
[CrossRef] [PubMed]

Wu, J.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl. Opt. 31, 3585–3595 (1993).
[CrossRef]

Xie, S.

A. E. Profio, S. Xie, K.-H. Shu, “Diagnosis of tumors by fluorescence: quantification of photosensitizer concentration,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 12–18 (1990).

Appl. Opt. (5)

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Cancer Res. (1)

J. K. Frisoli, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, K. T. Schomaker, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1992).

Int. J. Cancer (1)

D. Braichotte, J.-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnieres, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra (meta-hydroxyphenyl) chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

L. Lilge, C. O’Carroll, B. C. Wilson, “A solubilization technique for photosensitizer quantification in ex vivo tissue samples,” J. Photochem. Photobiol. B 39, 229–235 (1997).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

D. R. Braichotte, J.-F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Photochem. Photobiol. (3)

R. H. Pottier, Y. F. A. Chow, J-P. Laplante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
[CrossRef] [PubMed]

R. Biolo, G. Jori, J. C. Kennedy, P. Nadeau, R. Pottier, E. Reddi, G. Weagle, “A comparison of fluorescence methods used in the pharmacokinetic studies of Zn (II) phthalocyanine in mice,” Photochem. Photobiol. 53, 113–118 (1991).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–384 (2001).
[CrossRef] [PubMed]

Other (3)

D. R. Doiron, J. B. Dunn, W. L. Mitchell, B. Dalton, G. M. Garbo, J. A. Warner, “A fiber optic based fluorescence detection system for in vivo studies of exogenous chromophore pharmacokinetics,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 312–322 (1995).

W. R. Potter, T. S. Mang, “Photofrin II levels by in vivo fluorescence photometry,” in Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, eds. (Liss, New York, 1984), pp. 177–186.

A. E. Profio, S. Xie, K.-H. Shu, “Diagnosis of tumors by fluorescence: quantification of photosensitizer concentration,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 12–18 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the measurement geometry. Excitation light (wavelength λ x ) is delivered via the source optical fiber. Fluorescence at wavelength λ m is detected with a second fiber at a distance ρ F . Diffusely reflected excitation light is detected with a third fiber at distance ρ R .

Fig. 2
Fig. 2

Schematic of the experimental system. The optical fiber probe allows simultaneous measurement of the reflectance and fluorescence at ten source–detector distances ranging from 0.33 to 3.50 mm. Measurements were performed on nine different tissue-simulating phantoms containing eight different concentrations of AlPcS4, for a total of 72 experiments.

Fig. 3
Fig. 3

Plot of the fluorescence/reflectance ratio for all 72 experiments for a particular choice of distances: ρ F = 0.67 mm and ρ R = 1.33 mm. Symbol shapes indicate background absorption values; symbol shading indicates scattering values for the phantom solutions. The straight line is that which minimizes the rms error in concentration and passes through the origin. The actual value of F/ R depends on the instrument and is not significant in the analysis. Measurement error is less than 5%.

Fig. 4
Fig. 4

Contour plot showing the percentage rms error in concentration for all 72 experiments for all combinations of ρ F , ρ R from 0.33 to 3.00 mm. For each combination the data were analyzed as shown in Fig. 3. Values above 50% are not shown. The contour interval is 1% rms error.

Fig. 5
Fig. 5

Contour plot showing the percentage rms error in concentration predicted by Monte Carlo simulations as a function of ρ F and ρ R . Data are not plotted for ρ < 0.40 mm because the gradient is steep. The contours are distorted at larger values of ρ F , ρ R because of relatively large statistical uncertainties in the simulation results. The contour interval is 1% rms error.

Fig. 6
Fig. 6

(a) Raw fluorescence signal measured in vivo at a source–detector distance of 0.86 mm versus actual concentration of AlPcS4 determined post mortem. The signal from the skin is more than twice that from liver even though the AlPcS4 concentration is less than half. (b) AlPcS4 concentration estimated in vivo by use of the F/ R ratio at ρ F = 0.86 mm, ρ R = 1.42 mm versus the tissue concentration measured post mortem. The results for muscle, skin, and liver tissue cluster close to the line of equality. The linear regression best fit to the data is shown, with [Estimate] = 1.025 × [Assay Concentration] + 0.029, with R 2 = 0.967. Error bars along assay concentration axis are based on multiple assays of the same tissue samples.

Metrics