Abstract

Acousto-optic interactions allow the measurement of nonoptical material properties with high-resolution optical methods. We modulated a sample with ultrasound while simultaneously imaging with a traditional optical coherence tomography (OCT) system. The measured acousto-optic signal then depends on the mechanical response of the tissue to the applied modulation. The acquired acoustically enhanced OCT signals are consistent with established acousto-optic theory and provide enhanced contrast to OCT images.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. F. de Boer, T. E. Milner, J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  3. X. J. Wang, T. E. Milner, Z. Chen, J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt. 36, 144–149 (1997).
    [CrossRef] [PubMed]
  4. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef] [PubMed]
  5. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  6. K. W. Ferrara, “Blood flow measurements using ultrasound,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).
  7. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, S. J. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  8. J. M. Schmitt, X. Bao, S. Xiao, “Micro-elastography of tissue with OCT,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchon, J. A. Izatt, eds., Proc. SPIE3598, 47–55 (1999).
  9. C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).
  10. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).
  11. A. Korpel, Acousto-Optics, 2nd ed. (Marcel Dekker, New York, 1997).
  12. R. D. Guenther, Modern Optics (Wiley, New York, 1990).
  13. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum. Electron. 5, 1205–1215 (1999).
    [CrossRef]
  14. M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
  15. C. J. Pavlin, M. D. Sherar, F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology 97, 244–250 (1990).
    [CrossRef] [PubMed]
  16. C. J. Pavlin, K. Harasiewicz, M. D. Sherar, F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98, 287–295 (1990).
    [CrossRef]
  17. C. J. Pavlin, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” Am. J. Ophthalmol. 113, 381–389 (1992).
    [PubMed]
  18. C. J. Pavlin, F. S. Foster, “Ultrasound biomicroscopy in glaucoma,” Acta Ophthalmol. Suppl. 204, 7–9 (1992).
    [PubMed]
  19. C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
    [CrossRef] [PubMed]
  20. C. J. Pavlin, “Practical application of ultrasound biomicroscopy,” Can. J. Ophthalmol. 30, 225–229 (1995).
    [PubMed]
  21. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  22. M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
    [CrossRef]

2000

1999

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum. Electron. 5, 1205–1215 (1999).
[CrossRef]

1997

1995

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

C. J. Pavlin, “Practical application of ultrasound biomicroscopy,” Can. J. Ophthalmol. 30, 225–229 (1995).
[PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

1992

C. J. Pavlin, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” Am. J. Ophthalmol. 113, 381–389 (1992).
[PubMed]

C. J. Pavlin, F. S. Foster, “Ultrasound biomicroscopy in glaucoma,” Acta Ophthalmol. Suppl. 204, 7–9 (1992).
[PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990

C. J. Pavlin, M. D. Sherar, F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology 97, 244–250 (1990).
[CrossRef] [PubMed]

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98, 287–295 (1990).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).

Bao, X.

J. M. Schmitt, X. Bao, S. Xiao, “Micro-elastography of tissue with OCT,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchon, J. A. Izatt, eds., Proc. SPIE3598, 47–55 (1999).

Barton, J. K.

Boppart, S. A.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

Brezinksi, M. E.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

Brezinski, M. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

de Boer, J. F.

Ferrara, K. W.

K. W. Ferrara, “Blood flow measurements using ultrasound,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Foster, F. S.

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

C. J. Pavlin, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” Am. J. Ophthalmol. 113, 381–389 (1992).
[PubMed]

C. J. Pavlin, F. S. Foster, “Ultrasound biomicroscopy in glaucoma,” Acta Ophthalmol. Suppl. 204, 7–9 (1992).
[PubMed]

C. J. Pavlin, M. D. Sherar, F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology 97, 244–250 (1990).
[CrossRef] [PubMed]

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98, 287–295 (1990).
[CrossRef]

Fujimoto, J. G.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Guenther, R. D.

R. D. Guenther, Modern Optics (Wiley, New York, 1990).

Harasiewicz, K.

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

C. J. Pavlin, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” Am. J. Ophthalmol. 113, 381–389 (1992).
[PubMed]

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98, 287–295 (1990).
[CrossRef]

Heathcote, G.

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

Hee, M. R.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).

Korpel, A.

A. Korpel, Acousto-Optics, 2nd ed. (Marcel Dekker, New York, 1997).

Kulkarni, M. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Macken, P.

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

Malekafzali, A.

Mermin, N. D.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).

Milner, T. E.

Nelson, J. S.

Nelson, S. J.

Pavlin, C. J.

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

C. J. Pavlin, “Practical application of ultrasound biomicroscopy,” Can. J. Ophthalmol. 30, 225–229 (1995).
[PubMed]

C. J. Pavlin, F. S. Foster, “Ultrasound biomicroscopy in glaucoma,” Acta Ophthalmol. Suppl. 204, 7–9 (1992).
[PubMed]

C. J. Pavlin, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” Am. J. Ophthalmol. 113, 381–389 (1992).
[PubMed]

C. J. Pavlin, M. D. Sherar, F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology 97, 244–250 (1990).
[CrossRef] [PubMed]

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98, 287–295 (1990).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Saxer, C.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum. Electron. 5, 1205–1215 (1999).
[CrossRef]

J. M. Schmitt, X. Bao, S. Xiao, “Micro-elastography of tissue with OCT,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchon, J. A. Izatt, eds., Proc. SPIE3598, 47–55 (1999).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sherar, M.

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

Sherar, M. D.

C. J. Pavlin, M. D. Sherar, F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology 97, 244–250 (1990).
[CrossRef] [PubMed]

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98, 287–295 (1990).
[CrossRef]

Southern, J. F.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

Srinivas, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

Thomas, C. W.

M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
[CrossRef]

Trope, G. E.

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

van Gemert, J. C.

van Gemert, M. J. C.

Wang, X.

Wang, X. J.

Weissman, N. J.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

Welch, A. J.

Weyman, A. E.

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

Xiang, S.

Xiao, S.

J. M. Schmitt, X. Bao, S. Xiao, “Micro-elastography of tissue with OCT,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchon, J. A. Izatt, eds., Proc. SPIE3598, 47–55 (1999).

Yazdanfar, S.

Zhao, Y.

Acta Ophthalmol. Suppl.

C. J. Pavlin, F. S. Foster, “Ultrasound biomicroscopy in glaucoma,” Acta Ophthalmol. Suppl. 204, 7–9 (1992).
[PubMed]

Am. J. Ophthalmol.

C. J. Pavlin, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” Am. J. Ophthalmol. 113, 381–389 (1992).
[PubMed]

Appl. Opt.

Can. J. Ophthalmol.

C. J. Pavlin, “Practical application of ultrasound biomicroscopy,” Can. J. Ophthalmol. 30, 225–229 (1995).
[PubMed]

Electron. Lett.

M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
[CrossRef]

Heart

M. E. Brezinksi, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Assesing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).

IEEE J. Sel. Top. Quantum. Electron.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum. Electron. 5, 1205–1215 (1999).
[CrossRef]

Ophthalmology

C. J. Pavlin, P. Macken, G. E. Trope, G. Heathcote, M. Sherar, K. Harasiewicz, F. S. Foster, “Ultrasound biomicroscopic imaging of the effects of YAG laser cycloablation in postmortem eyes and living patients,” Ophthalmology 102, 334–341 (1995).
[CrossRef] [PubMed]

C. J. Pavlin, M. D. Sherar, F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology 97, 244–250 (1990).
[CrossRef] [PubMed]

C. J. Pavlin, K. Harasiewicz, M. D. Sherar, F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology 98, 287–295 (1990).
[CrossRef]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

J. M. Schmitt, X. Bao, S. Xiao, “Micro-elastography of tissue with OCT,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchon, J. A. Izatt, eds., Proc. SPIE3598, 47–55 (1999).

C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).

A. Korpel, Acousto-Optics, 2nd ed. (Marcel Dekker, New York, 1997).

R. D. Guenther, Modern Optics (Wiley, New York, 1990).

K. W. Ferrara, “Blood flow measurements using ultrasound,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photon–phonon scattering. A photon and a phonon interact, whereby a phonon can be (a) absorbed by the photon, increasing the photon energy, or (b) emitted by the photon, decreasing the photon energy.

Fig. 2
Fig. 2

General OCT setup. The OCT system is designed around a fiber-based Michelson interferometer. The source is a low-coherence light source. The 50:50 beam splitter (BS) sent half the source light to the sample and half to the reference mirror. The specifics of the sample arm and of the processing arm depend on the experiment.

Fig. 3
Fig. 3

AE-OCT setups. The white squares mark the imaged areas. (a) The sample is a polyethylene tube filled with a solution of titanium dioxide. Ultrasound is applied antiparallel to the laser beam. (b) The sample is an onion. Sound is applied perpendicular to the laser beam. (c) The sample is an onion. Sound is applied alternatively perpendicular and antiparallel to the laser beam. The intensity of the ultrasound is varied.

Fig. 4
Fig. 4

Power-density spectrum for a polyethylene tube with and without sound. (a) Without sound, the unique peak is centered at the carrier frequency 55 kHz. No other peaks are visible. (b) With sound, the fundamental peak is centered at the carrier frequency 55 kHz. First-order peaks are visible on either side of the fundamental at 35 kHz (= 55 - 20) and 75 kHz (= 55 + 20).

Fig. 5
Fig. 5

Power-density spectrum for an onion sample. (a) Because of good acoustic coupling, up to third-order interactions are visible at 119 kHz (= 59 + 3 × 20). The acousto-optic signals are much stronger than in the polyethylene tube [Fig. 4(b)]. (b) The scan was acquired from the same sample as (a), except the optical beam was displaced laterally by 450 µm. Even the second-order acousto-optic signals are stronger than the fundamental (optical) signal centered at 59 kHz. The third-order interactions are visible at 119 and -1 kHz (aliased).

Fig. 6
Fig. 6

Acousto-optic images of onion at an 80-kHz carrier frequency. Sound was generated with a 100-V applied voltage. Images are 2 mm horizontally by 1.4 mm vertically, or 100 pixels by 512 pixels. Equal pixel scale weighting was chosen to avoid scaling and interpolation artifacts.

Fig. 7
Fig. 7

Acousto-optic images of onion at a 70-kHz carrier frequency. Sound was generated with a 100-V applied voltage. Images are 2 mm horizontally by 1.4 mm vertically. 1:1 scaling was chosen to minimize scaling artifacts.

Fig. 8
Fig. 8

First-order acousto-optic signal strength versus applied horn voltage. Signal strength averaged over 200 A scans increases linearly with voltage. One notes that when the sound travels antiparallel to the OCT beam, a larger amplitude signal is produced than when the sound travels perpendicular to the OCT beam.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E=ω,
E=Ω,
Ein=Eout.
ωi+Ω=ωd absorption,
ωi=Ω+ωd emission,
ωd=ωi±Ω,
ωd=ωi±nΩ,n integerωd0,
Iω  Eω  Wprocess  N.
N  EΩ  P  V2.
I  V.

Metrics