Abstract

We have constructed a near-real-time combined imager suitable for simultaneous ultrasound and near-infrared diffusive light imaging and coregistration. The imager consists of a combined hand-held probe and the associated electronics for data acquisition. A two-dimensional ultrasound array is deployed at the center of the combined probe, and 12 dual-wavelength laser source fibers (780 and 830 nm) and 8 optical detector fibers are deployed at the periphery. We have experimentally evaluated the effects of missing optical sources in the middle of the combined probe on the accuracy of the reconstructed optical absorption coefficient and assessed the improvements of a reconstructed absorption coefficient with the guidance of the coregistered ultrasound. The results have shown that, when the central ultrasound array area is in the neighborhood of 2 cm × 2 cm, which corresponds to the size of most commercial ultrasound transducers, the optical imaging is not affected. The results have also shown that the iterative inversion algorithm converges quickly with the guidance of a priori three-dimensional target distribution, and only one iteration is needed to reconstruct an accurate optical absorption coefficient.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Stavros, D. Thickman, C. Rapp, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology 196, 123–134 (1995).
    [PubMed]
  2. G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
    [CrossRef] [PubMed]
  3. V. P. Jackson, “The current role of ultrasonography in breast imaging,” Radiol. Clin. North Am. 33, 1161–1170 (1995).
    [PubMed]
  4. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  5. S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, K. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  6. S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
    [CrossRef]
  7. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
    [CrossRef] [PubMed]
  8. T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  9. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  10. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  11. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  12. R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
  13. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–341 (1997).
    [CrossRef]
  14. H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).
  15. X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
    [CrossRef] [PubMed]
  16. C. Matson, H. Liu, “Backpropagation in turbid media,” J. Opt. Soc. Am. A 16, 1254–1265 (1999).
    [CrossRef]
  17. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).
  18. K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
    [CrossRef] [PubMed]
  19. S. Arridge, M. Schweiger, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  20. S. Arridge, M. Schweiger, “Photon-measurement density functions. II. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  21. Q. Zhu, T. Dunrana, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
    [CrossRef]
  22. Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
    [CrossRef]
  23. Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).
    [CrossRef]
  24. Q. Zhu, N. G. Chen, D. Q. Piao, P. Y. Guo, X. H. Ding, “Design of near-infrared imaging probe with the assistance of ultrasound localization,” Appl. Opt. 40, 3288–3303 (2001).
    [CrossRef]
  25. M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
    [CrossRef]
  26. W. Zhu, Y. Wang, J. Zhang, “Total least-squares reconstruction with wavelets for optical tomography,” J. Opt. Soc. Am. A 15, 2639–2650 (1998).
    [CrossRef]
  27. P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(4), 283–292 (1993).
    [CrossRef]
  28. G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).
  29. H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
    [CrossRef] [PubMed]
  30. T. M. Kolb, J. Lichy, J. H. Newhouse, “Occult cancer in women with dense breast: detection with screening US-diagnostic yield and tumor characteristics,” Radiology 207, 191–199 (1998).
    [PubMed]

2001

2000

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).
[CrossRef]

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

1999

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
[CrossRef] [PubMed]

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

C. Matson, H. Liu, “Backpropagation in turbid media,” J. Opt. Soc. Am. A 16, 1254–1265 (1999).
[CrossRef]

Q. Zhu, T. Dunrana, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

1998

W. Zhu, Y. Wang, J. Zhang, “Total least-squares reconstruction with wavelets for optical tomography,” J. Opt. Soc. Am. A 15, 2639–2650 (1998).
[CrossRef]

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, K. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

T. M. Kolb, J. Lichy, J. H. Newhouse, “Occult cancer in women with dense breast: detection with screening US-diagnostic yield and tumor characteristics,” Radiology 207, 191–199 (1998).
[PubMed]

1997

1996

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

1995

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).

K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

V. P. Jackson, “The current role of ultrasonography in breast imaging,” Radiol. Clin. North Am. 33, 1161–1170 (1995).
[PubMed]

T. A. Stavros, D. Thickman, C. Rapp, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology 196, 123–134 (1995).
[PubMed]

S. Arridge, M. Schweiger, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. Arridge, M. Schweiger, “Photon-measurement density functions. II. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

1994

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

1993

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(4), 283–292 (1993).
[CrossRef]

1973

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).

Anderson, E. R.

Arridge, S.

Barbour, R. L.

Bassett, L. W.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Brenner, M.

Butler, J.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cerussi, A.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Chance, B.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).
[CrossRef]

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Chen, N. G.

Coerkamp, E. G.

H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
[CrossRef] [PubMed]

Conant, E.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).
[CrossRef]

Coquoz, O.

Dambro, T.

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Ding, X. H.

Dunrana, T.

Durduran, T.

Ebbini, E. S.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(4), 283–292 (1993).
[CrossRef]

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, K. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Fishkin, J.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

Fishkin, J. B.

Flax, W.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(4), 283–292 (1993).
[CrossRef]

Franceschini, M.

Franceschini, M. A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gerety, E.

Golub, G. H.

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).

Grable, R. J.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Guo, P. Y.

Haida, M.

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Hansen, G. C.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Hermans, J.

H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
[CrossRef] [PubMed]

Holboke, M.

Jackson, V. P.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

V. P. Jackson, “The current role of ultrasonography in breast imaging,” Radiol. Clin. North Am. 33, 1161–1170 (1995).
[PubMed]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Jholboke, M.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

Jiang, H.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).

Kaschke, M.

Kashke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Kidney, D.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

Kla, S.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Kolb, T. M.

T. M. Kolb, J. Lichy, J. H. Newhouse, “Occult cancer in women with dense breast: detection with screening US-diagnostic yield and tumor characteristics,” Radiology 207, 191–199 (1998).
[PubMed]

Lanning, R.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Li, P. C.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(4), 283–292 (1993).
[CrossRef]

Li, X.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Lichy, J.

T. M. Kolb, J. Lichy, J. H. Newhouse, “Occult cancer in women with dense breast: detection with screening US-diagnostic yield and tumor characteristics,” Radiology 207, 191–199 (1998).
[PubMed]

Liu, H.

Matson, C.

McBride, T.

Meaney, P.

K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

Melany, M. L.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Miwa, M.

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Moesta, K.

Moesta, K. T.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Moskowitz, M.

K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

Newhouse, J. H.

T. M. Kolb, J. Lichy, J. H. Newhouse, “Occult cancer in women with dense breast: detection with screening US-diagnostic yield and tumor characteristics,” Radiology 207, 191–199 (1998).
[PubMed]

Nioka, S. M.

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Ntziachristos, V.

O’Donnell, M.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(4), 283–292 (1993).
[CrossRef]

O’Leary, M. A.

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).

Orel, S.

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Osterberg, U.

T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Pattanayak, D. N.

Patterson, M.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).

Paulsen, K.

T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).

K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

Pei, Y.

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Piao, D. Q.

Pogue, B.

T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).

Pogue, B. W.

Poplack, S.

Prince, J. S.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Rahbar, G.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Rapp, C.

T. A. Stavros, D. Thickman, C. Rapp, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology 196, 123–134 (1995).
[PubMed]

Reynolds, H.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Rohler, D. P.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Sayre, J. W.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Schlag, P.

Schlag, P. M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Schweiger, M.

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Shah, N.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

Shnall, M.

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Sie, A. C.

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

Stavros, T. A.

T. A. Stavros, D. Thickman, C. Rapp, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology 196, 123–134 (1995).
[PubMed]

Sullivan, D.

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

Sullivan, J.

K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

Svaasand, L.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Thickman, D.

T. A. Stavros, D. Thickman, C. Rapp, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology 196, 123–134 (1995).
[PubMed]

Tromberg, B.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Tromberg, B. J.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

van de Vijver, M. J.

H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
[CrossRef] [PubMed]

van Voorthuisen, A. E.

H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
[CrossRef] [PubMed]

Walker, S.

Wang, Y.

Yao, Y.

Yodh, A.

Yodh, A. G.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Zhang, J.

Zhao, S.

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Zhu, Q.

Q. Zhu, N. G. Chen, D. Q. Piao, P. Y. Guo, X. H. Ding, “Design of near-infrared imaging probe with the assistance of ultrasound localization,” Appl. Opt. 40, 3288–3303 (2001).
[CrossRef]

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).
[CrossRef]

Q. Zhu, T. Dunrana, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

Zhu, W.

Zonderland, H.

H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

S. M. Nioka, M. Shnall, M. Miwa, S. Orel, M. Haida, S. Zhao, B. Chance, “Photon imaging of human breast cancer,” Adv. Exp. Med. Biol. 16, 171–179 (1994).
[CrossRef]

Appl. Opt.

IEEE Trans. Med. Imaging

K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(4), 283–292 (1993).
[CrossRef]

J. Biomed. Opt.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).
[CrossRef]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A. 12, 253–266 (1995).

Neoplasia

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Opt. Lett.

Photochem. Photobiol.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Radiol. Clin. North Am.

V. P. Jackson, “The current role of ultrasonography in breast imaging,” Radiol. Clin. North Am. 33, 1161–1170 (1995).
[PubMed]

Radiology

T. A. Stavros, D. Thickman, C. Rapp, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology 196, 123–134 (1995).
[PubMed]

G. Rahbar, A. C. Sie, G. C. Hansen, J. S. Prince, M. L. Melany, H. Reynolds, V. P. Jackson, J. W. Sayre, L. W. Bassett, “Benign versus malignant solid breast masses: US differentiation,” Radiology 213, 889–894 (1999).
[CrossRef] [PubMed]

H. Zonderland, E. G. Coerkamp, J. Hermans, M. J. van de Vijver, A. E. van Voorthuisen, “Diagnosis of breast cancer: contribution of US as an adjunct to mammography,” Radiology 213, 413–422 (1999).
[CrossRef] [PubMed]

T. M. Kolb, J. Lichy, J. H. Newhouse, “Occult cancer in women with dense breast: detection with screening US-diagnostic yield and tumor characteristics,” Radiology 207, 191–199 (1998).
[PubMed]

SIAM (Soc. Ind. Appl. Math.) Rev.

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).

Other

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic arrangement of NIR source and detector fibers on the probe. Small solid circles are the source fibers and larger solid cycles are the detector fibers.

Fig. 2
Fig. 2

Picture of an experimental probe. An ultrasound array of 8 × 8 = 64 transducers occupies the central 3 cm × 3 cm area, and 12 dual-wavelength source fibers and 8 detector fibers are deployed at the periphery.

Fig. 3
Fig. 3

Schematic of the NIR frequency-domain imaging system. The modulation frequency is 140 MHz. The 12 dual-wavelength source channels are switched on sequentially by a PC, and 8 detector channels receive signals in parallel. BPF, bandpass filter; OSC, oscillator.

Fig. 4
Fig. 4

(a) Log(ραβ 2 A αβ) versus distancev ραβ after calibration. (b) Phase ϕαβ versus distance ραβ after calibration.

Fig. 5
Fig. 5

Schematic of our ultrasound scanner. We connected 64 ultrasound transducers to 64 parallel transmission and reception channels. The transmission part consists of 64 high-voltage pulsers, which can be controlled by computer-generated delay profiles. The reception part consists of 64 two-stage amplifiers and A/D converters. CH, channel.

Fig. 6
Fig. 6

Ultrasound subarray scanning configuration.

Fig. 7
Fig. 7

Picture of our combined system. NIR system (top) and ultrasound system (bottom) are mounted on a hospital cart.

Fig. 8
Fig. 8

Reconstructed NIR images of deeper targets (2.5 cm in depth, 1 cm in diameter, and the fitted background μ a and μ s ′ are 0.015 and 5.36 cm-1, respectively). The left column corresponds to images of a high-contrast target (μ a = 0.25 cm-1) obtained from different probe configurations, and the right column corresponds to images of a low-contrast target (μ a = 0.1 cm-1). Each row is related to a specific hole size: (a) and (b) no hole, (c) and (d) 2 cm × 2 cm, (e) and (f) 3 cm × 3 cm.

Fig. 9
Fig. 9

Reconstructed NIR images for shallow targets (1.5 cm in depth, 1 cm in diameter, and the fitted background μ a and μ s ′ are 0.015 and 5.36 cm-1, respectively). The left column corresponds to images of a high-contrast target (μ a = 0.25 cm-1), and the right column corresponds to images of a low-contrast target (μ a = 0.1 cm-1). Each row is related to a specific hole size: (a) and (b) no hole, (c) and (d) 2 cm × 2 cm, (e) and (f) 3 cm × 3 cm.

Fig. 10
Fig. 10

Deep target (2.5 cm in depth, 1 cm in diameter) of low optical contrast (μ a = 0.10 cm-1 and fitted background μ a and μ s ′ are 0.02 and 5.08 cm-1, respectively). (a) A-scan line of the reflected ultrasound pulse-echo signal indicating the target depth. (b) Absorption image of the low-contrast target obtained from optical-only reconstruction. (c) Ultrasound-guided reconstruction at target depth.

Fig. 11
Fig. 11

Simultaneously obtained ultrasound and NIR absorption images. The fitted background μ a and μ s ′ are 0.017 and 4.90 cm-1, respectively. (a) Ultrasound and (b) NIR absorption image of two high-contrast targets (target μ a = 0.25 cm-1). (c) Ultrasound and (d) NIR image of two low-contrast targets (target μ a = 0.10 cm-1). In both high- and low-contrast cases, the two targets were located at 2.5 cm in depth.

Fig. 12
Fig. 12

(a) and (c) -6-dB contour plots of ultrasound images shown in Figs. 11(a) and 11(c). The outer contour is -6 dB from the peak, and the contour spacing is 1 dB. (b) and (d) Corresponding NIR absorption maps reconstructed in target regions specified by ultrasound.

Tables (2)

Tables Icon

Table 1 Parameters of Reconstructed Images for Deep High-Contrast (μ a = 0.25-cm-1) and Low-Contrast (μ a = 0.1-cm-1) Targetsa

Tables Icon

Table 2 Parameters of Reconstructed Images for Shallow High-Contrast (μ a = 0.25-cm-1) and Low-Contrast (μ a = 0.1-cm-1) Targetsa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

UsdMX1=WMXNΔμaNX1
min Usd-WX2X2+1,
ν Grν, rd, ωUincrν, rs, ωνD¯drν3,
Āαβ, ϕ¯αβ,  α=1, 2,, m;  β=1, 2,, n.
Āαβ=IsαIdβexp-kiραβραβ2,ϕ¯αβ=φsα+φdβ+krραβ,
logραβ2Āαβ=logIsα+logIdβ-kiραβ,ϕ¯αβ=φsα+φdβ+krραβ.

Metrics