Abstract

We describe a technique that provides high time resolution and high accuracy in the velocity-history measurement by coupling an electronic streak camera with a push–pull-type velocity interferometer system for any reflector. This technique shows strong potential for the study of the dynamic process associated with a rapid velocity change, such as the acceleration of a foil plate driven by a pulsed laser beam. Also, by using a micrometer-size spot optical probe, we demonstrate the acceleration histories of Al 10-µm-thick foil plates at laser intensities ranging from 30 to ∼400 GW/cm2 with a subnanosecond time resolution and within a 1–2% error for peak velocity.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Barker, R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).
    [CrossRef]
  2. W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50, 73–78 (1979).
    [CrossRef] [PubMed]
  3. M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
    [CrossRef]
  4. D. D. Bloomqust, S. A. Sheffield, “Optically recording intereferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).
    [CrossRef]
  5. W. F. Hemsing, “VISRA: interferometer quadrature signal recording by electric streak camera,” (Los Alamos National Laboratory, Los Alamos, N.M., 1985).
  6. L. M. Barker, “The accuracy of VISAR instrumentation,” in Shock Compression of Condensed Matter—1997, S. C. Schmidt, D. P. Dandekar, J. W. Forbes, eds. (American Institue of Physics, New York, 1998), pp. 833–836.
  7. R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
    [CrossRef]
  8. S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
    [CrossRef]
  9. R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
    [CrossRef] [PubMed]
  10. D. L. Paisley, N. I. Montoya, D. B. Stahl, I. A. Garcia, “Interferometry, streak photograph, and stereo photography of laser-driven miniature flying plates,” in International Congress on High Speed Photography and Photonics, P. W. Fuller, ed., Proc. SPIE1358, 760–765 (1990).
  11. W. M. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
    [CrossRef]
  12. L. M. Barker, Valyn International, 12514 Menual Boulevard, N.E., Albuquerque, N.M. 87112-2554 (personal communication, 1997).
  13. Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
    [CrossRef]
  14. L. M. Barker, “Multi-beam VISARs for simultaneous velocity vs. time measurements,” in Shock Compression of Condensed Matter—1999, M. D. Furnish, L. C. Chhabildas, R. S. Hixson, eds. (American Institue of Physics, New York, 2000), pp. 999–1002.
  15. L. M. Barker, “VISARSS: a new data reduction program for VISARs,” (Sandia National Laboratories, Livermore, Calif., 1988).
  16. D. E. Gray, ed., American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963), Chap. 2h, pp. 2–92.
  17. J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
    [CrossRef]
  18. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 4j, pp. 4–223.

1999 (1)

Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
[CrossRef]

1995 (1)

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

1993 (1)

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

1990 (1)

W. M. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

1983 (2)

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

D. D. Bloomqust, S. A. Sheffield, “Optically recording intereferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).
[CrossRef]

1979 (2)

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50, 73–78 (1979).
[CrossRef] [PubMed]

1977 (1)

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

1972 (1)

L. M. Barker, R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).
[CrossRef]

Armstrong, C. M.

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

Auerbach, J. M.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

Barker, L. M.

L. M. Barker, R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).
[CrossRef]

L. M. Barker, “VISARSS: a new data reduction program for VISARs,” (Sandia National Laboratories, Livermore, Calif., 1988).

L. M. Barker, Valyn International, 12514 Menual Boulevard, N.E., Albuquerque, N.M. 87112-2554 (personal communication, 1997).

L. M. Barker, “Multi-beam VISARs for simultaneous velocity vs. time measurements,” in Shock Compression of Condensed Matter—1999, M. D. Furnish, L. C. Chhabildas, R. S. Hixson, eds. (American Institue of Physics, New York, 2000), pp. 999–1002.

L. M. Barker, “The accuracy of VISAR instrumentation,” in Shock Compression of Condensed Matter—1997, S. C. Schmidt, D. P. Dandekar, J. W. Forbes, eds. (American Institue of Physics, New York, 1998), pp. 833–836.

Bloomqust, D. D.

D. D. Bloomqust, S. A. Sheffield, “Optically recording intereferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).
[CrossRef]

Bodner, S. E.

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

Campbell, E. M.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

Cauble, R.

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

Chen, G.

Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
[CrossRef]

Decoste, R.

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

Durand, M.

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

Garcia, I. A.

D. L. Paisley, N. I. Montoya, D. B. Stahl, I. A. Garcia, “Interferometry, streak photograph, and stereo photography of laser-driven miniature flying plates,” in International Congress on High Speed Photography and Photonics, P. W. Fuller, ed., Proc. SPIE1358, 760–765 (1990).

Hemsing, W. F.

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50, 73–78 (1979).
[CrossRef] [PubMed]

W. F. Hemsing, “VISRA: interferometer quadrature signal recording by electric streak camera,” (Los Alamos National Laboratory, Los Alamos, N.M., 1985).

Hollenbach, R. E.

L. M. Barker, R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).
[CrossRef]

Holmes, N. C.

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

Hoover, T. J.

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

Kilkenny, J. D.

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

Laharrage, P.

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

Lalle, P.

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

LeBihan, A.

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

Lee, R. W.

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

Li, Z.

Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
[CrossRef]

Lindl, J.

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

Liu, J.

Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
[CrossRef]

Ma, R.

Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
[CrossRef]

McLean, E. A.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

Meeks, K. D.

W. M. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Montoya, N. I.

D. L. Paisley, N. I. Montoya, D. B. Stahl, I. A. Garcia, “Interferometry, streak photograph, and stereo photography of laser-driven miniature flying plates,” in International Congress on High Speed Photography and Photonics, P. W. Fuller, ed., Proc. SPIE1358, 760–765 (1990).

Morvan, J.

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

Obenschain, S. P.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

Paisley, D. L.

D. L. Paisley, N. I. Montoya, D. B. Stahl, I. A. Garcia, “Interferometry, streak photograph, and stereo photography of laser-driven miniature flying plates,” in International Congress on High Speed Photography and Photonics, P. W. Fuller, ed., Proc. SPIE1358, 760–765 (1990).

Phillion, D. W.

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

Price, R. H.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

Pujols, H.

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

Ripin, B. H.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

Rosen, M. D.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

Sheffield, S. A.

D. D. Bloomqust, S. A. Sheffield, “Optically recording intereferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).
[CrossRef]

Stahl, D. B.

D. L. Paisley, N. I. Montoya, D. B. Stahl, I. A. Garcia, “Interferometry, streak photograph, and stereo photography of laser-driven miniature flying plates,” in International Congress on High Speed Photography and Photonics, P. W. Fuller, ed., Proc. SPIE1358, 760–765 (1990).

Trott, W. M.

W. M. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Whitlock, R. R.

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

Yao, J.

Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
[CrossRef]

J. Appl. Phys. (3)

L. M. Barker, R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).
[CrossRef]

D. D. Bloomqust, S. A. Sheffield, “Optically recording intereferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).
[CrossRef]

W. M. Trott, K. D. Meeks, “High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Phys. Plasmas (1)

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

Phys. Rev. Lett. (3)

R. Decoste, S. E. Bodner, B. H. Ripin, E. A. McLean, S. P. Obenschain, C. M. Armstrong, “Ablative acceleration of laser-irradiated thin-foil targets,” Phys. Rev. Lett. 42, 1673–1677 (1979).
[CrossRef]

S. P. Obenschain, R. R. Whitlock, E. A. McLean, B. H. Ripin, R. H. Price, D. W. Phillion, E. M. Campbell, M. D. Rosen, J. M. Auerbach, “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett. 50, 44–48 (1983).
[CrossRef]

R. Cauble, D. W. Phillion, T. J. Hoover, N. C. Holmes, J. D. Kilkenny, R. W. Lee, “Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils,” Phys. Rev. Lett. 70, 2102–2105 (1993).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50, 73–78 (1979).
[CrossRef] [PubMed]

M. Durand, P. Laharrage, P. Lalle, A. LeBihan, J. Morvan, H. Pujols, “Interferometric laser technique for accurate velocity measurement in shock wave physics,” Rev. Sci. Instrum. 48, 275–278 (1977).
[CrossRef]

Z. Li, R. Ma, G. Chen, J. Liu, J. Yao, “Multipoint velocity interferometer system for any reflector,” Rev. Sci. Instrum. 70, 3872–3876 (1999).
[CrossRef]

Other (8)

L. M. Barker, “Multi-beam VISARs for simultaneous velocity vs. time measurements,” in Shock Compression of Condensed Matter—1999, M. D. Furnish, L. C. Chhabildas, R. S. Hixson, eds. (American Institue of Physics, New York, 2000), pp. 999–1002.

L. M. Barker, “VISARSS: a new data reduction program for VISARs,” (Sandia National Laboratories, Livermore, Calif., 1988).

D. E. Gray, ed., American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963), Chap. 2h, pp. 2–92.

D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 4j, pp. 4–223.

L. M. Barker, Valyn International, 12514 Menual Boulevard, N.E., Albuquerque, N.M. 87112-2554 (personal communication, 1997).

W. F. Hemsing, “VISRA: interferometer quadrature signal recording by electric streak camera,” (Los Alamos National Laboratory, Los Alamos, N.M., 1985).

L. M. Barker, “The accuracy of VISAR instrumentation,” in Shock Compression of Condensed Matter—1997, S. C. Schmidt, D. P. Dandekar, J. W. Forbes, eds. (American Institue of Physics, New York, 1998), pp. 833–836.

D. L. Paisley, N. I. Montoya, D. B. Stahl, I. A. Garcia, “Interferometry, streak photograph, and stereo photography of laser-driven miniature flying plates,” in International Congress on High Speed Photography and Photonics, P. W. Fuller, ed., Proc. SPIE1358, 760–765 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Setup of foil plate specimen, push–pull-type VISAR, and an ESC or PMT fringe pattern recording system. (b) Set of fringe signal pickup assembly that is used to connect VISAR with ESC or PMT. The VISAR exit beam is aligned on the rosette in which seven fibers are bundled to transmit the signal to the ESC and the PMT. There are four sets of fringe signal pickup assemblies used for four exits, 1A, 2A, 1B, and 2B.

Fig. 2
Fig. 2

(a) Principle of the micrometer-size spot optical probe. (b) Illumination spot size as a function of the distance between Lens B and the specimen. The crosses are measurements of the pinhole method, and the solid curve is fitted. The cw laser power is 1 W.

Fig. 3
Fig. 3

VISAR record and analysis of shot 99810s3: (a) Fringe pattern recorded by the ESC system from a 10-µm-thick Al foil plate driven at 59 GW/cm2. Each channel has six fibers, and × denotes that fiber damaged during the construction. (b) Digitized data of channels 1A and 1B. (c) Subtractions of 1A–1B and 2A–2B.

Fig. 4
Fig. 4

Comparison of the velocity profiles detected by the ESC and the PMT systems. The low time resolution of the PMT system may cause some of the fringes to be lost.

Fig. 5
Fig. 5

VISAR record and analysis of shot 00616s5: (a) fringe pattern recorded by the ESC system from a 10-µm-thick Al foil plate driven at 340 GW/cm2. (b) Digitized data of channels 1A and 1B. (c) Subtractions of 1A–1B and 2A–2B.

Fig. 6
Fig. 6

Computed velocity, displacement, and acceleration rate as a function of time: solid curve, computed velocity; dashed curve, acceleration rate; dash-dotted curve, displacement.

Fig. 7
Fig. 7

Summary of the velocity profiles for Al 10-µm-thick foil plates driven at intensities between 28 and 380 GW/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

vt-τ/2=VPF×Ft,
Ft=θt/2π,
θt=tan-1D2t/D1t0t.

Metrics