Abstract

Using a Lorentz–Drude model, we determine optical constants in the range from 300 to 1000 nm for CdIn2O4 thin films deposited by rf reactive sputtering from the measurement of transmission and reflection. We discuss the effect of deposition conditions including substrate temperature and oxygen concentration in a reactive atmosphere and postdeposition heat treatment on optical constants, absorption properties, and the bandgap of thin films. It can be found that changes in optical constants and bandgap are in good agreement with those of the carrier concentration. Therefore an optical constant could be related to the film’s inherent properties, such as the energy gap and carrier concentration, and might be regarded as a useful probe for monitoring in situ the film process. A study of Urbach tails reveals that the effect of substrate temperature on the characteristic photon energy is negligible.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Budzynska, E. Leja, S. Skrzypek, “Transparent conductive CdIn2O4 thin films prepared by dc reactive sputtering,” Sol. Energy Mater. 12, 57–68 (1985).
    [CrossRef]
  2. M. Labeau, V. Reboux, D. Dhahri, J. C. Joubert, “New mixed oxides as thin film transparent electrodes spinel phase CdIn2O4,” Thin Solid Films 136, 257–262 (1986).
    [CrossRef]
  3. K. Zakrzewska, E. Leja, “The electrical and optical properties of CdIn2O4 thin film prepared by dc reactive sputtering,” Vacuum 36, 485–487 (1986).
    [CrossRef]
  4. T. Pisarkiewicz, K. Zakrzewska, E. Leja, “Preparation, electrical properties and optical characterization of Cd2SnO4 and CdIn2O4 thin films as transparent and conductive coatings,” Thin Solid Films 153, 479–486 (1987).
    [CrossRef]
  5. K. Zakrzewska, T. Pisarkiewicz, A. Czapla, “Scattering of charge carriers in reactively sputtered CdIn2O4 thin films,” Phys. Status Solidi A 99, 141–149 (1987).
    [CrossRef]
  6. Z. Szklarski, K. Zakrzewska, M. Rekas, “Thin oxide films as gas sensors,” Thin Solid Films 174, 269–275 (1989).
    [CrossRef]
  7. W. Wang, K. Liao, A. Liu, “X-ray photoelectron spectroscopy studies of CdIn2O4 films,” Appl. Surf. Sci. 68, 227–230 (1993).
    [CrossRef]
  8. D. Peng, S. Jiang, L. Xie, “Study on the gas-sensitive effect of CdIn2O4 thin films,” Phys. Status Solidi A 136, 441–446 (1993).
    [CrossRef]
  9. W. Wang, K. Liao, “Infrared reflection spectra of CdIn2O4 films,” Appl. Phys. Lett. 66, 950–952 (1995).
    [CrossRef]
  10. M. Yano, M. Fukui, M. Haraguchi, Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci. 227, 129–137 (1990).
    [CrossRef]
  11. A. Takano, M. Kawasaki, H. Koinuma, “In situ determination of optical constants of growing hydrogenated amorphours silicon film by p-polarized light reflectance measurement on the surface,” J. Appl. Phys. 73, 7987–7989 (1993).
    [CrossRef]
  12. D. E. Aspnes, W. E. Quinn, S. Gregory, “Application of ellipsometry to crystal growth by organometallic molecular beam epitaxy,” Appl. Phys. Lett. 56, 2569–2571 (1990).
    [CrossRef]
  13. R. Droopad, C. H. Kuo, S. Anand, “Determination of molecular beam epitaxial growth parameters by ellipsometry,” J. Vac. Sci. Technol. B 12, 1211–1213 (1994).
    [CrossRef]
  14. W. G. Breiland, K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductors films using in situ normal incidence reflectance,” J. Appl. Phys. 78, 6726–6736 (1995).
    [CrossRef]
  15. J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Determination of optical constants of thin films coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983).
    [CrossRef]
  16. C. J. Powell, “Analysis of optical- and inelastic-electron-scattering Data. II. Application to Al,” J. Opt. Soc. Am. 60, 78–93 (1970).
    [CrossRef]
  17. M. I. Markovic, A. D. Rakic, “Determination of the reflection coefficients of laser light of wavelength λ ∈ (0.22 µm, 200 µm) from the surface of aluminum using the Lorentz–Drude model,” Appl. Opt. 29, 3479–3483 (1990).
    [CrossRef] [PubMed]
  18. D. Rakic, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
    [CrossRef] [PubMed]
  19. M. I. Markovic, A. D. Rakic, “Determination of optical properties of aluminium including electron reradiation in the Lorentz–Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
    [CrossRef]
  20. H. A. Maclead, Thin Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, UK, 1986).
  21. B. Li, “Properties of transparent conductive cadmium indium oxidate films obtained by r.f. reactive from a Cd-In alloy target,” M.S. thesis (Lanzhou University, Lanzhou, China, 1992).
  22. N. Balasubramanian, A. Subrahmanyam, “Electrical and optical properties of reactively evaporated indium tin oxide (ITO) films—dependence on substrate temperature and tin concentration,” J. Phys. D 22, 206–209 (1989).
    [CrossRef]
  23. B. Bessais, H. Ezzaonia, R. Bennaceur, “Electrical behavior and optical properties of screen-printed ITO thin films,” Semicond. Sci. Technol. 8, 1671–1678 (1993).
    [CrossRef]
  24. W. F. Wu, B. S. Chion, S. T. Hsieh, “Effect of sputtering power on the structure and optical properties of rf magnetron sputtered ITO films,” Semicond. Sci. Technol. 9, 1242–1249 (1994).
    [CrossRef]
  25. F. P. Koffyberg, F. A. Benko, “Cd2SnO4, CdIn2O4 and Cd2GeO4 as anodes for the photoelectrolysis of water,” Appl. Phys. Lett. 37, 320–322 (1980).
    [CrossRef]
  26. I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R159 (1986).
    [CrossRef]

1995 (3)

W. Wang, K. Liao, “Infrared reflection spectra of CdIn2O4 films,” Appl. Phys. Lett. 66, 950–952 (1995).
[CrossRef]

W. G. Breiland, K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductors films using in situ normal incidence reflectance,” J. Appl. Phys. 78, 6726–6736 (1995).
[CrossRef]

D. Rakic, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
[CrossRef] [PubMed]

1994 (2)

W. F. Wu, B. S. Chion, S. T. Hsieh, “Effect of sputtering power on the structure and optical properties of rf magnetron sputtered ITO films,” Semicond. Sci. Technol. 9, 1242–1249 (1994).
[CrossRef]

R. Droopad, C. H. Kuo, S. Anand, “Determination of molecular beam epitaxial growth parameters by ellipsometry,” J. Vac. Sci. Technol. B 12, 1211–1213 (1994).
[CrossRef]

1993 (4)

B. Bessais, H. Ezzaonia, R. Bennaceur, “Electrical behavior and optical properties of screen-printed ITO thin films,” Semicond. Sci. Technol. 8, 1671–1678 (1993).
[CrossRef]

A. Takano, M. Kawasaki, H. Koinuma, “In situ determination of optical constants of growing hydrogenated amorphours silicon film by p-polarized light reflectance measurement on the surface,” J. Appl. Phys. 73, 7987–7989 (1993).
[CrossRef]

W. Wang, K. Liao, A. Liu, “X-ray photoelectron spectroscopy studies of CdIn2O4 films,” Appl. Surf. Sci. 68, 227–230 (1993).
[CrossRef]

D. Peng, S. Jiang, L. Xie, “Study on the gas-sensitive effect of CdIn2O4 thin films,” Phys. Status Solidi A 136, 441–446 (1993).
[CrossRef]

1990 (4)

D. E. Aspnes, W. E. Quinn, S. Gregory, “Application of ellipsometry to crystal growth by organometallic molecular beam epitaxy,” Appl. Phys. Lett. 56, 2569–2571 (1990).
[CrossRef]

M. Yano, M. Fukui, M. Haraguchi, Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci. 227, 129–137 (1990).
[CrossRef]

M. I. Markovic, A. D. Rakic, “Determination of optical properties of aluminium including electron reradiation in the Lorentz–Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
[CrossRef]

M. I. Markovic, A. D. Rakic, “Determination of the reflection coefficients of laser light of wavelength λ ∈ (0.22 µm, 200 µm) from the surface of aluminum using the Lorentz–Drude model,” Appl. Opt. 29, 3479–3483 (1990).
[CrossRef] [PubMed]

1989 (2)

N. Balasubramanian, A. Subrahmanyam, “Electrical and optical properties of reactively evaporated indium tin oxide (ITO) films—dependence on substrate temperature and tin concentration,” J. Phys. D 22, 206–209 (1989).
[CrossRef]

Z. Szklarski, K. Zakrzewska, M. Rekas, “Thin oxide films as gas sensors,” Thin Solid Films 174, 269–275 (1989).
[CrossRef]

1987 (2)

T. Pisarkiewicz, K. Zakrzewska, E. Leja, “Preparation, electrical properties and optical characterization of Cd2SnO4 and CdIn2O4 thin films as transparent and conductive coatings,” Thin Solid Films 153, 479–486 (1987).
[CrossRef]

K. Zakrzewska, T. Pisarkiewicz, A. Czapla, “Scattering of charge carriers in reactively sputtered CdIn2O4 thin films,” Phys. Status Solidi A 99, 141–149 (1987).
[CrossRef]

1986 (3)

M. Labeau, V. Reboux, D. Dhahri, J. C. Joubert, “New mixed oxides as thin film transparent electrodes spinel phase CdIn2O4,” Thin Solid Films 136, 257–262 (1986).
[CrossRef]

K. Zakrzewska, E. Leja, “The electrical and optical properties of CdIn2O4 thin film prepared by dc reactive sputtering,” Vacuum 36, 485–487 (1986).
[CrossRef]

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R159 (1986).
[CrossRef]

1985 (1)

K. Budzynska, E. Leja, S. Skrzypek, “Transparent conductive CdIn2O4 thin films prepared by dc reactive sputtering,” Sol. Energy Mater. 12, 57–68 (1985).
[CrossRef]

1983 (1)

1980 (1)

F. P. Koffyberg, F. A. Benko, “Cd2SnO4, CdIn2O4 and Cd2GeO4 as anodes for the photoelectrolysis of water,” Appl. Phys. Lett. 37, 320–322 (1980).
[CrossRef]

1970 (1)

Anand, S.

R. Droopad, C. H. Kuo, S. Anand, “Determination of molecular beam epitaxial growth parameters by ellipsometry,” J. Vac. Sci. Technol. B 12, 1211–1213 (1994).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, W. E. Quinn, S. Gregory, “Application of ellipsometry to crystal growth by organometallic molecular beam epitaxy,” Appl. Phys. Lett. 56, 2569–2571 (1990).
[CrossRef]

Balasubramanian, N.

N. Balasubramanian, A. Subrahmanyam, “Electrical and optical properties of reactively evaporated indium tin oxide (ITO) films—dependence on substrate temperature and tin concentration,” J. Phys. D 22, 206–209 (1989).
[CrossRef]

Benko, F. A.

F. P. Koffyberg, F. A. Benko, “Cd2SnO4, CdIn2O4 and Cd2GeO4 as anodes for the photoelectrolysis of water,” Appl. Phys. Lett. 37, 320–322 (1980).
[CrossRef]

Bennaceur, R.

B. Bessais, H. Ezzaonia, R. Bennaceur, “Electrical behavior and optical properties of screen-printed ITO thin films,” Semicond. Sci. Technol. 8, 1671–1678 (1993).
[CrossRef]

Bessais, B.

B. Bessais, H. Ezzaonia, R. Bennaceur, “Electrical behavior and optical properties of screen-printed ITO thin films,” Semicond. Sci. Technol. 8, 1671–1678 (1993).
[CrossRef]

Breiland, W. G.

W. G. Breiland, K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductors films using in situ normal incidence reflectance,” J. Appl. Phys. 78, 6726–6736 (1995).
[CrossRef]

Budzynska, K.

K. Budzynska, E. Leja, S. Skrzypek, “Transparent conductive CdIn2O4 thin films prepared by dc reactive sputtering,” Sol. Energy Mater. 12, 57–68 (1985).
[CrossRef]

Chion, B. S.

W. F. Wu, B. S. Chion, S. T. Hsieh, “Effect of sputtering power on the structure and optical properties of rf magnetron sputtered ITO films,” Semicond. Sci. Technol. 9, 1242–1249 (1994).
[CrossRef]

Czapla, A.

K. Zakrzewska, T. Pisarkiewicz, A. Czapla, “Scattering of charge carriers in reactively sputtered CdIn2O4 thin films,” Phys. Status Solidi A 99, 141–149 (1987).
[CrossRef]

Dhahri, D.

M. Labeau, V. Reboux, D. Dhahri, J. C. Joubert, “New mixed oxides as thin film transparent electrodes spinel phase CdIn2O4,” Thin Solid Films 136, 257–262 (1986).
[CrossRef]

Dobrowolski, J. A.

Droopad, R.

R. Droopad, C. H. Kuo, S. Anand, “Determination of molecular beam epitaxial growth parameters by ellipsometry,” J. Vac. Sci. Technol. B 12, 1211–1213 (1994).
[CrossRef]

Ezzaonia, H.

B. Bessais, H. Ezzaonia, R. Bennaceur, “Electrical behavior and optical properties of screen-printed ITO thin films,” Semicond. Sci. Technol. 8, 1671–1678 (1993).
[CrossRef]

Fukui, M.

M. Yano, M. Fukui, M. Haraguchi, Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci. 227, 129–137 (1990).
[CrossRef]

Granqvist, C. G.

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R159 (1986).
[CrossRef]

Gregory, S.

D. E. Aspnes, W. E. Quinn, S. Gregory, “Application of ellipsometry to crystal growth by organometallic molecular beam epitaxy,” Appl. Phys. Lett. 56, 2569–2571 (1990).
[CrossRef]

Hamberg, I.

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R159 (1986).
[CrossRef]

Haraguchi, M.

M. Yano, M. Fukui, M. Haraguchi, Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci. 227, 129–137 (1990).
[CrossRef]

Ho, F. C.

Hsieh, S. T.

W. F. Wu, B. S. Chion, S. T. Hsieh, “Effect of sputtering power on the structure and optical properties of rf magnetron sputtered ITO films,” Semicond. Sci. Technol. 9, 1242–1249 (1994).
[CrossRef]

Jiang, S.

D. Peng, S. Jiang, L. Xie, “Study on the gas-sensitive effect of CdIn2O4 thin films,” Phys. Status Solidi A 136, 441–446 (1993).
[CrossRef]

Joubert, J. C.

M. Labeau, V. Reboux, D. Dhahri, J. C. Joubert, “New mixed oxides as thin film transparent electrodes spinel phase CdIn2O4,” Thin Solid Films 136, 257–262 (1986).
[CrossRef]

Kawasaki, M.

A. Takano, M. Kawasaki, H. Koinuma, “In situ determination of optical constants of growing hydrogenated amorphours silicon film by p-polarized light reflectance measurement on the surface,” J. Appl. Phys. 73, 7987–7989 (1993).
[CrossRef]

Killeen, K. P.

W. G. Breiland, K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductors films using in situ normal incidence reflectance,” J. Appl. Phys. 78, 6726–6736 (1995).
[CrossRef]

Koffyberg, F. P.

F. P. Koffyberg, F. A. Benko, “Cd2SnO4, CdIn2O4 and Cd2GeO4 as anodes for the photoelectrolysis of water,” Appl. Phys. Lett. 37, 320–322 (1980).
[CrossRef]

Koinuma, H.

A. Takano, M. Kawasaki, H. Koinuma, “In situ determination of optical constants of growing hydrogenated amorphours silicon film by p-polarized light reflectance measurement on the surface,” J. Appl. Phys. 73, 7987–7989 (1993).
[CrossRef]

Kuo, C. H.

R. Droopad, C. H. Kuo, S. Anand, “Determination of molecular beam epitaxial growth parameters by ellipsometry,” J. Vac. Sci. Technol. B 12, 1211–1213 (1994).
[CrossRef]

Labeau, M.

M. Labeau, V. Reboux, D. Dhahri, J. C. Joubert, “New mixed oxides as thin film transparent electrodes spinel phase CdIn2O4,” Thin Solid Films 136, 257–262 (1986).
[CrossRef]

Leja, E.

T. Pisarkiewicz, K. Zakrzewska, E. Leja, “Preparation, electrical properties and optical characterization of Cd2SnO4 and CdIn2O4 thin films as transparent and conductive coatings,” Thin Solid Films 153, 479–486 (1987).
[CrossRef]

K. Zakrzewska, E. Leja, “The electrical and optical properties of CdIn2O4 thin film prepared by dc reactive sputtering,” Vacuum 36, 485–487 (1986).
[CrossRef]

K. Budzynska, E. Leja, S. Skrzypek, “Transparent conductive CdIn2O4 thin films prepared by dc reactive sputtering,” Sol. Energy Mater. 12, 57–68 (1985).
[CrossRef]

Li, B.

B. Li, “Properties of transparent conductive cadmium indium oxidate films obtained by r.f. reactive from a Cd-In alloy target,” M.S. thesis (Lanzhou University, Lanzhou, China, 1992).

Liao, K.

W. Wang, K. Liao, “Infrared reflection spectra of CdIn2O4 films,” Appl. Phys. Lett. 66, 950–952 (1995).
[CrossRef]

W. Wang, K. Liao, A. Liu, “X-ray photoelectron spectroscopy studies of CdIn2O4 films,” Appl. Surf. Sci. 68, 227–230 (1993).
[CrossRef]

Liu, A.

W. Wang, K. Liao, A. Liu, “X-ray photoelectron spectroscopy studies of CdIn2O4 films,” Appl. Surf. Sci. 68, 227–230 (1993).
[CrossRef]

Maclead, H. A.

H. A. Maclead, Thin Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, UK, 1986).

Markovic, M. I.

M. I. Markovic, A. D. Rakic, “Determination of optical properties of aluminium including electron reradiation in the Lorentz–Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
[CrossRef]

M. I. Markovic, A. D. Rakic, “Determination of the reflection coefficients of laser light of wavelength λ ∈ (0.22 µm, 200 µm) from the surface of aluminum using the Lorentz–Drude model,” Appl. Opt. 29, 3479–3483 (1990).
[CrossRef] [PubMed]

Peng, D.

D. Peng, S. Jiang, L. Xie, “Study on the gas-sensitive effect of CdIn2O4 thin films,” Phys. Status Solidi A 136, 441–446 (1993).
[CrossRef]

Pisarkiewicz, T.

K. Zakrzewska, T. Pisarkiewicz, A. Czapla, “Scattering of charge carriers in reactively sputtered CdIn2O4 thin films,” Phys. Status Solidi A 99, 141–149 (1987).
[CrossRef]

T. Pisarkiewicz, K. Zakrzewska, E. Leja, “Preparation, electrical properties and optical characterization of Cd2SnO4 and CdIn2O4 thin films as transparent and conductive coatings,” Thin Solid Films 153, 479–486 (1987).
[CrossRef]

Powell, C. J.

Quinn, W. E.

D. E. Aspnes, W. E. Quinn, S. Gregory, “Application of ellipsometry to crystal growth by organometallic molecular beam epitaxy,” Appl. Phys. Lett. 56, 2569–2571 (1990).
[CrossRef]

Rakic, A. D.

M. I. Markovic, A. D. Rakic, “Determination of optical properties of aluminium including electron reradiation in the Lorentz–Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
[CrossRef]

M. I. Markovic, A. D. Rakic, “Determination of the reflection coefficients of laser light of wavelength λ ∈ (0.22 µm, 200 µm) from the surface of aluminum using the Lorentz–Drude model,” Appl. Opt. 29, 3479–3483 (1990).
[CrossRef] [PubMed]

Rakic, D.

Reboux, V.

M. Labeau, V. Reboux, D. Dhahri, J. C. Joubert, “New mixed oxides as thin film transparent electrodes spinel phase CdIn2O4,” Thin Solid Films 136, 257–262 (1986).
[CrossRef]

Rekas, M.

Z. Szklarski, K. Zakrzewska, M. Rekas, “Thin oxide films as gas sensors,” Thin Solid Films 174, 269–275 (1989).
[CrossRef]

Shintani, Y.

M. Yano, M. Fukui, M. Haraguchi, Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci. 227, 129–137 (1990).
[CrossRef]

Skrzypek, S.

K. Budzynska, E. Leja, S. Skrzypek, “Transparent conductive CdIn2O4 thin films prepared by dc reactive sputtering,” Sol. Energy Mater. 12, 57–68 (1985).
[CrossRef]

Subrahmanyam, A.

N. Balasubramanian, A. Subrahmanyam, “Electrical and optical properties of reactively evaporated indium tin oxide (ITO) films—dependence on substrate temperature and tin concentration,” J. Phys. D 22, 206–209 (1989).
[CrossRef]

Szklarski, Z.

Z. Szklarski, K. Zakrzewska, M. Rekas, “Thin oxide films as gas sensors,” Thin Solid Films 174, 269–275 (1989).
[CrossRef]

Takano, A.

A. Takano, M. Kawasaki, H. Koinuma, “In situ determination of optical constants of growing hydrogenated amorphours silicon film by p-polarized light reflectance measurement on the surface,” J. Appl. Phys. 73, 7987–7989 (1993).
[CrossRef]

Waldorf, A.

Wang, W.

W. Wang, K. Liao, “Infrared reflection spectra of CdIn2O4 films,” Appl. Phys. Lett. 66, 950–952 (1995).
[CrossRef]

W. Wang, K. Liao, A. Liu, “X-ray photoelectron spectroscopy studies of CdIn2O4 films,” Appl. Surf. Sci. 68, 227–230 (1993).
[CrossRef]

Wu, W. F.

W. F. Wu, B. S. Chion, S. T. Hsieh, “Effect of sputtering power on the structure and optical properties of rf magnetron sputtered ITO films,” Semicond. Sci. Technol. 9, 1242–1249 (1994).
[CrossRef]

Xie, L.

D. Peng, S. Jiang, L. Xie, “Study on the gas-sensitive effect of CdIn2O4 thin films,” Phys. Status Solidi A 136, 441–446 (1993).
[CrossRef]

Yano, M.

M. Yano, M. Fukui, M. Haraguchi, Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci. 227, 129–137 (1990).
[CrossRef]

Zakrzewska, K.

Z. Szklarski, K. Zakrzewska, M. Rekas, “Thin oxide films as gas sensors,” Thin Solid Films 174, 269–275 (1989).
[CrossRef]

T. Pisarkiewicz, K. Zakrzewska, E. Leja, “Preparation, electrical properties and optical characterization of Cd2SnO4 and CdIn2O4 thin films as transparent and conductive coatings,” Thin Solid Films 153, 479–486 (1987).
[CrossRef]

K. Zakrzewska, T. Pisarkiewicz, A. Czapla, “Scattering of charge carriers in reactively sputtered CdIn2O4 thin films,” Phys. Status Solidi A 99, 141–149 (1987).
[CrossRef]

K. Zakrzewska, E. Leja, “The electrical and optical properties of CdIn2O4 thin film prepared by dc reactive sputtering,” Vacuum 36, 485–487 (1986).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

F. P. Koffyberg, F. A. Benko, “Cd2SnO4, CdIn2O4 and Cd2GeO4 as anodes for the photoelectrolysis of water,” Appl. Phys. Lett. 37, 320–322 (1980).
[CrossRef]

W. Wang, K. Liao, “Infrared reflection spectra of CdIn2O4 films,” Appl. Phys. Lett. 66, 950–952 (1995).
[CrossRef]

D. E. Aspnes, W. E. Quinn, S. Gregory, “Application of ellipsometry to crystal growth by organometallic molecular beam epitaxy,” Appl. Phys. Lett. 56, 2569–2571 (1990).
[CrossRef]

Appl. Surf. Sci. (1)

W. Wang, K. Liao, A. Liu, “X-ray photoelectron spectroscopy studies of CdIn2O4 films,” Appl. Surf. Sci. 68, 227–230 (1993).
[CrossRef]

J. Appl. Phys. (3)

A. Takano, M. Kawasaki, H. Koinuma, “In situ determination of optical constants of growing hydrogenated amorphours silicon film by p-polarized light reflectance measurement on the surface,” J. Appl. Phys. 73, 7987–7989 (1993).
[CrossRef]

W. G. Breiland, K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductors films using in situ normal incidence reflectance,” J. Appl. Phys. 78, 6726–6736 (1995).
[CrossRef]

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R159 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

N. Balasubramanian, A. Subrahmanyam, “Electrical and optical properties of reactively evaporated indium tin oxide (ITO) films—dependence on substrate temperature and tin concentration,” J. Phys. D 22, 206–209 (1989).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. Droopad, C. H. Kuo, S. Anand, “Determination of molecular beam epitaxial growth parameters by ellipsometry,” J. Vac. Sci. Technol. B 12, 1211–1213 (1994).
[CrossRef]

Opt. Laser Technol. (1)

M. I. Markovic, A. D. Rakic, “Determination of optical properties of aluminium including electron reradiation in the Lorentz–Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
[CrossRef]

Phys. Status Solidi A (2)

D. Peng, S. Jiang, L. Xie, “Study on the gas-sensitive effect of CdIn2O4 thin films,” Phys. Status Solidi A 136, 441–446 (1993).
[CrossRef]

K. Zakrzewska, T. Pisarkiewicz, A. Czapla, “Scattering of charge carriers in reactively sputtered CdIn2O4 thin films,” Phys. Status Solidi A 99, 141–149 (1987).
[CrossRef]

Semicond. Sci. Technol. (2)

B. Bessais, H. Ezzaonia, R. Bennaceur, “Electrical behavior and optical properties of screen-printed ITO thin films,” Semicond. Sci. Technol. 8, 1671–1678 (1993).
[CrossRef]

W. F. Wu, B. S. Chion, S. T. Hsieh, “Effect of sputtering power on the structure and optical properties of rf magnetron sputtered ITO films,” Semicond. Sci. Technol. 9, 1242–1249 (1994).
[CrossRef]

Sol. Energy Mater. (1)

K. Budzynska, E. Leja, S. Skrzypek, “Transparent conductive CdIn2O4 thin films prepared by dc reactive sputtering,” Sol. Energy Mater. 12, 57–68 (1985).
[CrossRef]

Surf. Sci. (1)

M. Yano, M. Fukui, M. Haraguchi, Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci. 227, 129–137 (1990).
[CrossRef]

Thin Solid Films (3)

M. Labeau, V. Reboux, D. Dhahri, J. C. Joubert, “New mixed oxides as thin film transparent electrodes spinel phase CdIn2O4,” Thin Solid Films 136, 257–262 (1986).
[CrossRef]

Z. Szklarski, K. Zakrzewska, M. Rekas, “Thin oxide films as gas sensors,” Thin Solid Films 174, 269–275 (1989).
[CrossRef]

T. Pisarkiewicz, K. Zakrzewska, E. Leja, “Preparation, electrical properties and optical characterization of Cd2SnO4 and CdIn2O4 thin films as transparent and conductive coatings,” Thin Solid Films 153, 479–486 (1987).
[CrossRef]

Vacuum (1)

K. Zakrzewska, E. Leja, “The electrical and optical properties of CdIn2O4 thin film prepared by dc reactive sputtering,” Vacuum 36, 485–487 (1986).
[CrossRef]

Other (2)

H. A. Maclead, Thin Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, UK, 1986).

B. Li, “Properties of transparent conductive cadmium indium oxidate films obtained by r.f. reactive from a Cd-In alloy target,” M.S. thesis (Lanzhou University, Lanzhou, China, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission and reflection spectra of CdIn2O4 thin films deposited on a substrate temperature of 360 °C and oxygen concentration of 10% after annealing: solid curve, measured spectra; dashed curve, fitted spectra.

Fig. 2
Fig. 2

Transmission and reflection spectra for CdIn2O4 thin films (a) deposited at different substrate temperatures (solid curve, 230 °C; dashed curve, 285 °C; dotted curve, 425 °C), (b) deposited at different oxygen concentration in reactive atmosphere (solid curve, 10%; dashed curve, 25%; dotted curve, 50%), (c) as-sputtered and annealed for thin film deposited at a 360 °C substrate temperature and 10% oxygen concentration (solid curve, as-sputtered; dashed curve, after annealed).

Fig. 3
Fig. 3

Optical constants of CdIn2O4 thin films (a) deposited at different substrate temperatures (solid curve, 230 °C; dashed curve, 285 °C; dotted curve, 425 °C), (b) deposited at a different oxygen concentration in a reactive atmosphere (solid curve, 10%; dashed curve, 25%; dotted curve, 50%), (c) as-sputtered and annealed for thin film deposited at a 360 °C substrate temperature and 10% oxygen concentration (solid curve, as-sputtered; dashed curve, after annealed).

Fig. 4
Fig. 4

Absorption coefficient of CdIn2O4 thin films (a) deposited at a different substrate temperature, (b) deposited at a different oxygen concentration in a reactive atmosphere, (c) as-sputtered and annealed for thin film deposited at a 360 °C substrate temperature and 10% oxygen concentration.

Fig. 5
Fig. 5

Absorption coefficient Inα versus photon energy ℏω for thin films deposited at different substrate temperatures.

Fig. 6
Fig. 6

Bandgap shift ΔE g BM versus carrier concentration N e .

Fig. 7
Fig. 7

(αℏω)2/3 as a function of ℏω corresponding to as-sputtered and annealed thin film deposited at a 360 °C substrate temperature and 10% oxygen concentration.

Tables (1)

Tables Icon

Table 1 Carrier Concentration at Different Substrate Temperatures

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

εω=εfω+sbω.
εfω=1-f0ωp2ωω+iΓ0,
εbω=-j=1rfjωp2ω2-ωj2+iωΓj,
n=ε12+ε221/2+ε121/2,
k=ε12+ε221/2-ε121/2,
T=4η0Reηsub|η0B+C|
R=η0B-Cη0B+C2,
BC,
BC=cos δi sin δηiη sin δcos δ1ηsub,
α=α0 expσE-E0kT,
Eg=Eg0+ΔEg,
EgEg0+ΔEgBM,
ΔEgBM=π222mνc*3Neπ2/3,
1mvc*=1mv*+1mc*.
αω=Aω-EgN for ω>Eg

Metrics