Abstract

A simple phase grating is constructed by insertion of a liquid-crystal layer between two glass plates, upon one of which a pair of transparent interdigitated electrodes is formed. With a bias application, liquid-crystal molecules align themselves along the electric field lines, which are substantially parallel to the glass plates. By controlling the degree of this in-plane switching for the liquid-crystal molecules, one can generate various phase-shift distributions for the light passing through the device. The grating characteristics are altered accordingly. Versatile design and ease of fabrication are potential advantages of this device for some future applications.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Dev. ED-26, 1734–1737 (1979).
    [CrossRef]
  2. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
    [CrossRef] [PubMed]
  3. M. Bouvier, T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 38, 2129–2137 (2000).
    [CrossRef]
  4. H. Murai, T. Gotoh, M. Suzuki, E. Hasegawa, K. Mizoguchi, “Electrooptic properties for liquid crystal phase gratings,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 230–239 (1992).
    [CrossRef]
  5. A. M. Strudwick, G. A. Lester, “Electrically controlled phase grating for instrumentation applications,” Electron. Lett. 35, 1374–1376 (1999).
    [CrossRef]
  6. H. Sakata, M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. Part 1 39, 1516–1521 (2000).
    [CrossRef]
  7. H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
    [CrossRef]
  8. W.-T. He, T. Nose, S. Sato, “Novel liquid crystal grating with a relief structure by a simple UV irradiation process,” Jpn. J. Appl. Phys. 37, 4066–4069 (1998).
    [CrossRef]
  9. C. E. Holton, P. Bos, M. Miller, W. E. Glenn, “Patterned alignment, liquid crystal diffractive spatial light modulators and devices,” in Spatial Light Modulators, R. L. Sutherland, ed., Proc. SPIE3292, 25–36 (1998).
    [CrossRef]
  10. M. Kulishov, “Interdigitated electrode-induced phase grating with an electronically switchable and tunable period,” Appl. Opt. 38, 7356–7363 (1999).
    [CrossRef]
  11. M. Kitamura, “Computer simulation of director profile in two dimensional electric field,” in Conference Record of the International Display Research Conference, F. J. Kahn, program chair; T. L. Credelle, meeting chair (Society for Information Display, San Jose, Calif., 1994), pp. 350–353.

2000 (2)

M. Bouvier, T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 38, 2129–2137 (2000).
[CrossRef]

H. Sakata, M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. Part 1 39, 1516–1521 (2000).
[CrossRef]

1999 (2)

M. Kulishov, “Interdigitated electrode-induced phase grating with an electronically switchable and tunable period,” Appl. Opt. 38, 7356–7363 (1999).
[CrossRef]

A. M. Strudwick, G. A. Lester, “Electrically controlled phase grating for instrumentation applications,” Electron. Lett. 35, 1374–1376 (1999).
[CrossRef]

1998 (1)

W.-T. He, T. Nose, S. Sato, “Novel liquid crystal grating with a relief structure by a simple UV irradiation process,” Jpn. J. Appl. Phys. 37, 4066–4069 (1998).
[CrossRef]

1997 (1)

H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
[CrossRef]

1996 (1)

1979 (1)

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Dev. ED-26, 1734–1737 (1979).
[CrossRef]

Asai, K.

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Dev. ED-26, 1734–1737 (1979).
[CrossRef]

Bos, P.

C. E. Holton, P. Bos, M. Miller, W. E. Glenn, “Patterned alignment, liquid crystal diffractive spatial light modulators and devices,” in Spatial Light Modulators, R. L. Sutherland, ed., Proc. SPIE3292, 25–36 (1998).
[CrossRef]

Bouvier, M.

M. Bouvier, T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 38, 2129–2137 (2000).
[CrossRef]

Credelle, T. L.

M. Kitamura, “Computer simulation of director profile in two dimensional electric field,” in Conference Record of the International Display Research Conference, F. J. Kahn, program chair; T. L. Credelle, meeting chair (Society for Information Display, San Jose, Calif., 1994), pp. 350–353.

Dorschner, T. A.

Friedman, L. J.

Fukai, M.

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Dev. ED-26, 1734–1737 (1979).
[CrossRef]

Glenn, W. E.

C. E. Holton, P. Bos, M. Miller, W. E. Glenn, “Patterned alignment, liquid crystal diffractive spatial light modulators and devices,” in Spatial Light Modulators, R. L. Sutherland, ed., Proc. SPIE3292, 25–36 (1998).
[CrossRef]

Gotoh, T.

H. Murai, T. Gotoh, M. Suzuki, E. Hasegawa, K. Mizoguchi, “Electrooptic properties for liquid crystal phase gratings,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 230–239 (1992).
[CrossRef]

Gunjima, T.

H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
[CrossRef]

Hasegawa, E.

H. Murai, T. Gotoh, M. Suzuki, E. Hasegawa, K. Mizoguchi, “Electrooptic properties for liquid crystal phase gratings,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 230–239 (1992).
[CrossRef]

He, W.-T.

W.-T. He, T. Nose, S. Sato, “Novel liquid crystal grating with a relief structure by a simple UV irradiation process,” Jpn. J. Appl. Phys. 37, 4066–4069 (1998).
[CrossRef]

Hirano, M.

H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
[CrossRef]

Hobbs, D. S.

Holton, C. E.

C. E. Holton, P. Bos, M. Miller, W. E. Glenn, “Patterned alignment, liquid crystal diffractive spatial light modulators and devices,” in Spatial Light Modulators, R. L. Sutherland, ed., Proc. SPIE3292, 25–36 (1998).
[CrossRef]

Hori, Y.

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Dev. ED-26, 1734–1737 (1979).
[CrossRef]

Hotaka, H.

H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
[CrossRef]

Kitamura, M.

M. Kitamura, “Computer simulation of director profile in two dimensional electric field,” in Conference Record of the International Display Research Conference, F. J. Kahn, program chair; T. L. Credelle, meeting chair (Society for Information Display, San Jose, Calif., 1994), pp. 350–353.

Kulishov, M.

Lester, G. A.

A. M. Strudwick, G. A. Lester, “Electrically controlled phase grating for instrumentation applications,” Electron. Lett. 35, 1374–1376 (1999).
[CrossRef]

Miller, M.

C. E. Holton, P. Bos, M. Miller, W. E. Glenn, “Patterned alignment, liquid crystal diffractive spatial light modulators and devices,” in Spatial Light Modulators, R. L. Sutherland, ed., Proc. SPIE3292, 25–36 (1998).
[CrossRef]

Mizoguchi, K.

H. Murai, T. Gotoh, M. Suzuki, E. Hasegawa, K. Mizoguchi, “Electrooptic properties for liquid crystal phase gratings,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 230–239 (1992).
[CrossRef]

Murai, H.

H. Murai, T. Gotoh, M. Suzuki, E. Hasegawa, K. Mizoguchi, “Electrooptic properties for liquid crystal phase gratings,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 230–239 (1992).
[CrossRef]

Nishimura, M.

H. Sakata, M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. Part 1 39, 1516–1521 (2000).
[CrossRef]

Nose, T.

W.-T. He, T. Nose, S. Sato, “Novel liquid crystal grating with a relief structure by a simple UV irradiation process,” Jpn. J. Appl. Phys. 37, 4066–4069 (1998).
[CrossRef]

Resler, D. P.

Sakata, H.

H. Sakata, M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. Part 1 39, 1516–1521 (2000).
[CrossRef]

Sato, H.

H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
[CrossRef]

Sato, S.

W.-T. He, T. Nose, S. Sato, “Novel liquid crystal grating with a relief structure by a simple UV irradiation process,” Jpn. J. Appl. Phys. 37, 4066–4069 (1998).
[CrossRef]

Scharf, T.

M. Bouvier, T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 38, 2129–2137 (2000).
[CrossRef]

Sharp, R. C.

Strudwick, A. M.

A. M. Strudwick, G. A. Lester, “Electrically controlled phase grating for instrumentation applications,” Electron. Lett. 35, 1374–1376 (1999).
[CrossRef]

Suzuki, M.

H. Murai, T. Gotoh, M. Suzuki, E. Hasegawa, K. Mizoguchi, “Electrooptic properties for liquid crystal phase gratings,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 230–239 (1992).
[CrossRef]

Tanabe, Y.

H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

A. M. Strudwick, G. A. Lester, “Electrically controlled phase grating for instrumentation applications,” Electron. Lett. 35, 1374–1376 (1999).
[CrossRef]

IEEE Trans. Electron Dev. (1)

Y. Hori, K. Asai, M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron Dev. ED-26, 1734–1737 (1979).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Sato, H. Hotaka, T. Gunjima, Y. Tanabe, M. Hirano, “Grating polarizing beam-splitter using polymerized liquid crystal,” Jpn. J. Appl. Phys. 36, 589–590 (1997).
[CrossRef]

W.-T. He, T. Nose, S. Sato, “Novel liquid crystal grating with a relief structure by a simple UV irradiation process,” Jpn. J. Appl. Phys. 37, 4066–4069 (1998).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

H. Sakata, M. Nishimura, “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals,” Jpn. J. Appl. Phys. Part 1 39, 1516–1521 (2000).
[CrossRef]

Opt. Eng. (1)

M. Bouvier, T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 38, 2129–2137 (2000).
[CrossRef]

Opt. Lett. (1)

Other (3)

H. Murai, T. Gotoh, M. Suzuki, E. Hasegawa, K. Mizoguchi, “Electrooptic properties for liquid crystal phase gratings,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 230–239 (1992).
[CrossRef]

C. E. Holton, P. Bos, M. Miller, W. E. Glenn, “Patterned alignment, liquid crystal diffractive spatial light modulators and devices,” in Spatial Light Modulators, R. L. Sutherland, ed., Proc. SPIE3292, 25–36 (1998).
[CrossRef]

M. Kitamura, “Computer simulation of director profile in two dimensional electric field,” in Conference Record of the International Display Research Conference, F. J. Kahn, program chair; T. L. Credelle, meeting chair (Society for Information Display, San Jose, Calif., 1994), pp. 350–353.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Liquid-crystal phase grating constructed by sandwiching a liquid-crystal layer between two glass plates, upon one of which interdigitated electrodes are formed. The bias applied to the electrodes induces in-plane switching of the molecules, and one polarization component of the incident light is diffracted.

Fig. 2
Fig. 2

Liquid-crystal molecules align themselves along the electric field lines. In the regions between the electrodes, the orientations are substantially horizontal.

Fig. 3
Fig. 3

Changes in diffraction intensities are observed as the applied bias is varied.

Fig. 4
Fig. 4

The measured intensity of diffracted light depends on the applied bias in a complicated manner.

Fig. 5
Fig. 5

When a periodic, rectangular phase-shift distribution is assumed, the diffraction intensity is calculated by a simple formula that contains the magnitude of the phase difference Δϕ.

Fig. 6
Fig. 6

The calculated distribution of the orientations of liquid-crystal molecules depends on the applied bias.

Fig. 7
Fig. 7

Based on the data shown in Fig. 6, phase-shift distributions and diffraction patterns are calculated for selected biases.

Fig. 8
Fig. 8

Calculated diffraction intensities for the data shown in Fig. 7.

Fig. 9
Fig. 9

A third electrode is added for switching diffraction angles. One can switch the periodicity by setting different bias patterns on these three electrodes.

Fig. 10
Fig. 10

Two liquid-crystal gratings are stacked such that both polarization components are diffracted.

Metrics