Abstract

Sealing of the flow channel is an important aspect during integration of microfluidic channels and optical waveguides. The uneven topography of many waveguide-fabrication techniques will lead to leakage of the fluid channels. Planarization methods such as chemical mechanical polishing or the etch-back technique are possible, but troublesome. We present a simple but efficient alternative: By means of changing the waveguide layout, bonding pads are formed along the microfluidic channels. With the same height as the waveguide, they effectively prevent leakage and hermetically seal the channels during bonding. Negligible influence on light propagation is found when 10-µm-wide bonding pads are used. Fabricated microsystems with application in absorbance measurements and flow cytometry are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 31, 244–248 (1990).
    [CrossRef]
  2. S. C. Jakeway, A. J. de Mello, E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
    [CrossRef]
  3. R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362, 349–373 (1998).
    [CrossRef]
  4. R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13–28 (1997).
    [CrossRef]
  5. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
    [CrossRef]
  6. R. J. Deri, “Monolithic integration of optical waveguide circuitry with III-V photodetectors for advanced lightwave receivers,” J. Lightwave Technol. 11, 1296–1313 (1993).
    [CrossRef]
  7. A. Neyer, T. Pohlmann, “Fabrication of low-loss titanium-diffused LiNbO3 waveguides using a closed platinum crucible,” Electron. Lett. 23, 1187–1188 (1987).
    [CrossRef]
  8. T. Storgaard-Larsen, O. Leistiko, “Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors,” J. Electrochem. Soc. 144, 1505–1513 (1997).
    [CrossRef]
  9. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
    [CrossRef]
  10. R. Yoshimura, M. Hikita, S. Tomaru, S. Imamura, “Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate,” J. Lightwave Technol. 16, 1030–1037 (1998).
    [CrossRef]
  11. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5th ed. (McGraw-Hill, New York, 1985).
  12. K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
    [CrossRef]
  13. P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.
  14. G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
    [CrossRef]
  15. K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
    [CrossRef]
  16. J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
    [CrossRef] [PubMed]
  17. Y. X. Li, P. J. French, R. F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst. 4, 132–138 (1995).
    [CrossRef]
  18. S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988).
    [CrossRef]
  19. J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
    [CrossRef]
  20. H. M. Shapiro, Practical Flow Cytometry, 3rd ed. (Wiley-Liss, New York, 1995).

2001 (2)

K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

2000 (2)

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

S. C. Jakeway, A. J. de Mello, E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[CrossRef]

1998 (2)

R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362, 349–373 (1998).
[CrossRef]

R. Yoshimura, M. Hikita, S. Tomaru, S. Imamura, “Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate,” J. Lightwave Technol. 16, 1030–1037 (1998).
[CrossRef]

1997 (2)

T. Storgaard-Larsen, O. Leistiko, “Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors,” J. Electrochem. Soc. 144, 1505–1513 (1997).
[CrossRef]

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13–28 (1997).
[CrossRef]

1996 (1)

K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
[CrossRef]

1995 (3)

Y. X. Li, P. J. French, R. F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst. 4, 132–138 (1995).
[CrossRef]

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
[CrossRef]

1993 (1)

R. J. Deri, “Monolithic integration of optical waveguide circuitry with III-V photodetectors for advanced lightwave receivers,” J. Lightwave Technol. 11, 1296–1313 (1993).
[CrossRef]

1990 (2)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 31, 244–248 (1990).
[CrossRef]

1988 (1)

S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988).
[CrossRef]

1987 (1)

A. Neyer, T. Pohlmann, “Fabrication of low-loss titanium-diffused LiNbO3 waveguides using a closed platinum crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

Achuthan, K.

K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
[CrossRef]

Ainslie, B. J.

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

Aitchison, J. S.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Babu, S. V.

K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
[CrossRef]

Benoit, V.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Campbell, D.

K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
[CrossRef]

Cooper, J. M.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Curry, J.

K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
[CrossRef]

de Mello, A. J.

S. C. Jakeway, A. J. de Mello, E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[CrossRef]

Deri, R. J.

R. J. Deri, “Monolithic integration of optical waveguide circuitry with III-V photodetectors for advanced lightwave receivers,” J. Lightwave Technol. 11, 1296–1313 (1993).
[CrossRef]

Ewing, G. W.

G. W. Ewing, Instrumental Methods of Chemical Analysis, 5th ed. (McGraw-Hill, New York, 1985).

French, P. J.

Y. X. Li, P. J. French, R. F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst. 4, 132–138 (1995).
[CrossRef]

Friis, P.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

Fujii, S.

S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988).
[CrossRef]

Fukumoto, M.

S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988).
[CrossRef]

Fuse, G.

S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988).
[CrossRef]

Graber, N.

A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 31, 244–248 (1990).
[CrossRef]

Hieftje, G. M.

R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362, 349–373 (1998).
[CrossRef]

Hikita, M.

Hobbs, S. E.

R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362, 349–373 (1998).
[CrossRef]

Hoppe, K.

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

Hübner, J.

K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

Imamura, S.

Jakeway, S. C.

S. C. Jakeway, A. J. de Mello, E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[CrossRef]

Jørgensen, A. M.

K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Kunz, R. E.

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13–28 (1997).
[CrossRef]

Kutter, J. P.

K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

Lacy, M.

K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
[CrossRef]

Leistiko, O.

T. Storgaard-Larsen, O. Leistiko, “Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors,” J. Electrochem. Soc. 144, 1505–1513 (1997).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

Li, Y. X.

Y. X. Li, P. J. French, R. F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst. 4, 132–138 (1995).
[CrossRef]

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
[CrossRef]

Manz, A.

A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 31, 244–248 (1990).
[CrossRef]

Maxwell, G. D.

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

Mogensen, K. B.

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

Neyer, A.

A. Neyer, T. Pohlmann, “Fabrication of low-loss titanium-diffused LiNbO3 waveguides using a closed platinum crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

Ohzone, T.

S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988).
[CrossRef]

Petersen, N.

Pohlmann, T.

A. Neyer, T. Pohlmann, “Fabrication of low-loss titanium-diffused LiNbO3 waveguides using a closed platinum crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

Potyrailo, R. A.

R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362, 349–373 (1998).
[CrossRef]

Ruano, J. M.

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Russell, E. L.

S. C. Jakeway, A. J. de Mello, E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[CrossRef]

Shapiro, H. M.

H. M. Shapiro, Practical Flow Cytometry, 3rd ed. (Wiley-Liss, New York, 1995).

Storgaard-Larsen, T.

T. Storgaard-Larsen, O. Leistiko, “Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors,” J. Electrochem. Soc. 144, 1505–1513 (1997).
[CrossRef]

Telleman, P.

K. B. Mogensen, P. Friis, J. Hübner, N. Petersen, A. M. Jørgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001).
[CrossRef]

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

Tomaru, S.

Widmer, H. M.

A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 31, 244–248 (1990).
[CrossRef]

Wolff, A.

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

Wolffenbuttel, R. F.

Y. X. Li, P. J. French, R. F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst. 4, 132–138 (1995).
[CrossRef]

Yoshimura, R.

Anal. Chem. (1)

J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Electron. Lett. (2)

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

A. Neyer, T. Pohlmann, “Fabrication of low-loss titanium-diffused LiNbO3 waveguides using a closed platinum crucible,” Electron. Lett. 23, 1187–1188 (1987).
[CrossRef]

Fresenius J. Anal. Chem. (2)

S. C. Jakeway, A. J. de Mello, E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem. 366, 525–539 (2000).
[CrossRef]

R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, “Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development,” Fresenius J. Anal. Chem. 362, 349–373 (1998).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Fujii, M. Fukumoto, G. Fuse, T. Ohzone, “A planarization technology using a bias-deposited dielectric film and an etch-back process,” IEEE Trans. Electron Devices 35, 1829–1833 (1988).
[CrossRef]

J. Electrochem. Soc. (1)

T. Storgaard-Larsen, O. Leistiko, “Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors,” J. Electrochem. Soc. 144, 1505–1513 (1997).
[CrossRef]

J. Electron. Mater. (1)

K. Achuthan, J. Curry, M. Lacy, D. Campbell, S. V. Babu, “Investigation of pad deformation and conditioning during the CMP of silicon dioxide films,” J. Electron. Mater. 25, 1628–1632 (1996).
[CrossRef]

J. Lightwave Technol. (2)

R. Yoshimura, M. Hikita, S. Tomaru, S. Imamura, “Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate,” J. Lightwave Technol. 16, 1030–1037 (1998).
[CrossRef]

R. J. Deri, “Monolithic integration of optical waveguide circuitry with III-V photodetectors for advanced lightwave receivers,” J. Lightwave Technol. 11, 1296–1313 (1993).
[CrossRef]

J. Microelectromech. Syst. (1)

Y. X. Li, P. J. French, R. F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst. 4, 132–138 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Hübner, K. B. Mogensen, A. M. Jørgensen, P. Friis, P. Telleman, J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72, 229–233 (2001).
[CrossRef]

Sens. Actuators B (3)

A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 31, 244–248 (1990).
[CrossRef]

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13–28 (1997).
[CrossRef]

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B 29, 37–50 (1995).
[CrossRef]

Other (3)

P. Friis, K. Hoppe, O. Leistiko, J. Hübner, J. P. Kutter, A. Wolff, P. Telleman, “Integrated optics for biochemical microsystems,” presented at Eurosensors XIII, The Hague, The Netherlands, 12–15 September 1999.

G. W. Ewing, Instrumental Methods of Chemical Analysis, 5th ed. (McGraw-Hill, New York, 1985).

H. M. Shapiro, Practical Flow Cytometry, 3rd ed. (Wiley-Liss, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of a system in which a microfluidic channel is integrated with common (telecommunication) silica-on-silicon waveguides. Channel sealing is not achieved because of the uneven glass surface.

Fig. 2
Fig. 2

In the adapted waveguide layout, two small trenches etched in the core layer define each waveguide. Furthermore, small structures (dikes) are formed between the trenches and the channel. This arrangement prevents leakage from the channel along the sides of the waveguides.

Fig. 3
Fig. 3

Top view of a simulation (BPM) of light from a 24-µm-wide waveguide coupled into a 500-µm-wide channel through a 10-µm-wide dike. The outlines of the waveguide and the dike are shown. Note the logarithmic gray scale.

Fig. 4
Fig. 4

Dependence of beam diameter and numerical aperture on the dike width as found by use of the BPM simulation. The beam diameter is taken at the far channel side (at z = 600 in Fig. 3).

Fig. 5
Fig. 5

SEM picture of a 24-µm-wide waveguide entering a microfluidic channel. The two trenches defining the waveguide are clearly seen. In this example the dikes are 20 µm wide.

Fig. 6
Fig. 6

Cross section of a bonded system cleaved through a dike structure. The fluidic channel (to the left) has been etched into the silicon. The 4-µm gap between the buffer–cladding glass and the top lid is seen to the right. The small void seen in the cladding glass next to the dike does not influence the channel sealing.

Fig. 7
Fig. 7

Visualization of light propagation in a system with a straight 500-µm-wide channel. Fluorescence from a fluorescein solution excited at 488 nm is emitted only from within the microfluidic channel.

Fig. 8
Fig. 8

Visualization of light propagation in a system with a circular cylindrical scattering chamber. Fluorescence from a fluorescein solution excited at 488 nm is seen. Six waveguides are distributed around the chamber to excite and measure fluorescence and scattered light from fluorescently stained cells entering the chamber.

Metrics