Abstract

Electrochemical oxidation of the surface of a thin gold film overlaid on an optical waveguide and placed in a cell containing sulfuric acid is monitored by integrated optical surface plasmon resonance (IOSPR) combined with cyclic voltammetry. Waveguide transmittance correlates well with the charge transferred to and from the electrode to oxidize and reduce the surface, with a 60% reduction in transmittance being observed for complete formation of the surface oxide. IOSPR sensors combined with electrochemical measurement and control show potential for sensitive and robust integrated multisensors for electroactive species.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
    [CrossRef]
  2. C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
    [CrossRef]
  3. G. Jerkiewicz, “Surface oxidation of noble-metal electrodes,” in Interfacial Electrochemistry, A. Wieckowski, ed. (Marcel Dekker, New York, 1999), p. 559.
  4. J. Horkans, B. D. Cahan, E. Yeager, “Electrode potential scanning ellipsometric spectroscopy: study of formation of the anodic oxide film on noble metals,” Surf. Sci. 46, 1–23 (1974).
    [CrossRef]
  5. A. Hamnett, “Ellipsometric techniques for the characterization of electrode surfaces,” J. Chem. Soc. Farad. Trans. 89, 1593–1607 (1993).
    [CrossRef]
  6. Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, “Time differential surface plasmon resonance measurements applied for electrochemical analysis,” Electroanalysis 9, 1239–1241 (1997).
    [CrossRef]
  7. R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
    [CrossRef] [PubMed]
  8. C. A. Goss, D. H. Charych, M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63, 85–88 (1991).
    [CrossRef]
  9. B. E. Conway, H. Angerstein-Kozlowska, W. B. A. Sharp, “Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation,” Anal. Chem. 45, 1331–1336 (1973).
    [CrossRef]
  10. J. O’M. Bockris, A. K. N. Reddy, An Introduction to an Interdisciplinary Area, Vol. 2 of Modern Electrochemistry (Plenum, New York, 1973).
  11. B. E. Conway, “Electrochemical oxide film formation at noble-metals as a surface-chemical process,” Prog. Surf. Sci. 49, 331–452 (1995).
    [CrossRef]
  12. F. Chao, M. Costa, A. Tadjeddine, “The use of optics for understanding the electrochemical interface,” J. Electroanal. Chem. 329, 313–327 (1992).
    [CrossRef]

1999 (1)

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

1997 (1)

Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, “Time differential surface plasmon resonance measurements applied for electrochemical analysis,” Electroanalysis 9, 1239–1241 (1997).
[CrossRef]

1995 (2)

B. E. Conway, “Electrochemical oxide film formation at noble-metals as a surface-chemical process,” Prog. Surf. Sci. 49, 331–452 (1995).
[CrossRef]

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

1993 (1)

A. Hamnett, “Ellipsometric techniques for the characterization of electrode surfaces,” J. Chem. Soc. Farad. Trans. 89, 1593–1607 (1993).
[CrossRef]

1992 (2)

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

F. Chao, M. Costa, A. Tadjeddine, “The use of optics for understanding the electrochemical interface,” J. Electroanal. Chem. 329, 313–327 (1992).
[CrossRef]

1991 (1)

C. A. Goss, D. H. Charych, M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63, 85–88 (1991).
[CrossRef]

1974 (1)

J. Horkans, B. D. Cahan, E. Yeager, “Electrode potential scanning ellipsometric spectroscopy: study of formation of the anodic oxide film on noble metals,” Surf. Sci. 46, 1–23 (1974).
[CrossRef]

1973 (1)

B. E. Conway, H. Angerstein-Kozlowska, W. B. A. Sharp, “Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation,” Anal. Chem. 45, 1331–1336 (1973).
[CrossRef]

Abuknesha, R. A.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

Angerstein-Kozlowska, H.

B. E. Conway, H. Angerstein-Kozlowska, W. B. A. Sharp, “Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation,” Anal. Chem. 45, 1331–1336 (1973).
[CrossRef]

Bockris, J. O’M.

J. O’M. Bockris, A. K. N. Reddy, An Introduction to an Interdisciplinary Area, Vol. 2 of Modern Electrochemistry (Plenum, New York, 1973).

Brecht, A.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

Brust, M.

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

Cahan, B. D.

J. Horkans, B. D. Cahan, E. Yeager, “Electrode potential scanning ellipsometric spectroscopy: study of formation of the anodic oxide film on noble metals,” Surf. Sci. 46, 1–23 (1974).
[CrossRef]

Chao, F.

F. Chao, M. Costa, A. Tadjeddine, “The use of optics for understanding the electrochemical interface,” J. Electroanal. Chem. 329, 313–327 (1992).
[CrossRef]

Charych, D. H.

C. A. Goss, D. H. Charych, M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63, 85–88 (1991).
[CrossRef]

Conway, B. E.

B. E. Conway, “Electrochemical oxide film formation at noble-metals as a surface-chemical process,” Prog. Surf. Sci. 49, 331–452 (1995).
[CrossRef]

B. E. Conway, H. Angerstein-Kozlowska, W. B. A. Sharp, “Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation,” Anal. Chem. 45, 1331–1336 (1973).
[CrossRef]

Costa, M.

F. Chao, M. Costa, A. Tadjeddine, “The use of optics for understanding the electrochemical interface,” J. Electroanal. Chem. 329, 313–327 (1992).
[CrossRef]

Gauglitz, G.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

Goss, C. A.

C. A. Goss, D. H. Charych, M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63, 85–88 (1991).
[CrossRef]

Hamnett, A.

A. Hamnett, “Ellipsometric techniques for the characterization of electrode surfaces,” J. Chem. Soc. Farad. Trans. 89, 1593–1607 (1993).
[CrossRef]

Hao, S.

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

Harris, R. D.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

Horiuchi, T.

Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, “Time differential surface plasmon resonance measurements applied for electrochemical analysis,” Electroanalysis 9, 1239–1241 (1997).
[CrossRef]

Horkans, J.

J. Horkans, B. D. Cahan, E. Yeager, “Electrode potential scanning ellipsometric spectroscopy: study of formation of the anodic oxide film on noble metals,” Surf. Sci. 46, 1–23 (1974).
[CrossRef]

Iwasaki, Y.

Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, “Time differential surface plasmon resonance measurements applied for electrochemical analysis,” Electroanalysis 9, 1239–1241 (1997).
[CrossRef]

Jerkiewicz, G.

G. Jerkiewicz, “Surface oxidation of noble-metal electrodes,” in Interfacial Electrochemistry, A. Wieckowski, ed. (Marcel Dekker, New York, 1999), p. 559.

Lavers, C. R.

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

Luff, B. J.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

Majda, M.

C. A. Goss, D. H. Charych, M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63, 85–88 (1991).
[CrossRef]

Morita, M.

Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, “Time differential surface plasmon resonance measurements applied for electrochemical analysis,” Electroanalysis 9, 1239–1241 (1997).
[CrossRef]

Mwarania, E. K.

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

Niwa, O.

Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, “Time differential surface plasmon resonance measurements applied for electrochemical analysis,” Electroanalysis 9, 1239–1241 (1997).
[CrossRef]

O’Dwyer, K.

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

Piehler, J.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

Piraud, C.

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

Reddy, A. K. N.

J. O’M. Bockris, A. K. N. Reddy, An Introduction to an Interdisciplinary Area, Vol. 2 of Modern Electrochemistry (Plenum, New York, 1973).

Schiffrin, D. J.

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

Sharp, W. B. A.

B. E. Conway, H. Angerstein-Kozlowska, W. B. A. Sharp, “Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation,” Anal. Chem. 45, 1331–1336 (1973).
[CrossRef]

Tadjeddine, A.

F. Chao, M. Costa, A. Tadjeddine, “The use of optics for understanding the electrochemical interface,” J. Electroanal. Chem. 329, 313–327 (1992).
[CrossRef]

Wilkinson, J. S.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

Yao, J.

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

Yeager, E.

J. Horkans, B. D. Cahan, E. Yeager, “Electrode potential scanning ellipsometric spectroscopy: study of formation of the anodic oxide film on noble metals,” Surf. Sci. 46, 1–23 (1974).
[CrossRef]

Anal. Chem. (2)

C. A. Goss, D. H. Charych, M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63, 85–88 (1991).
[CrossRef]

B. E. Conway, H. Angerstein-Kozlowska, W. B. A. Sharp, “Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation,” Anal. Chem. 45, 1331–1336 (1973).
[CrossRef]

Biosens. Bioelectron. (1)

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14, 377–386 (1999).
[CrossRef] [PubMed]

Electroanalysis (1)

Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, “Time differential surface plasmon resonance measurements applied for electrochemical analysis,” Electroanalysis 9, 1239–1241 (1997).
[CrossRef]

J. Chem. Soc. Farad. Trans. (1)

A. Hamnett, “Ellipsometric techniques for the characterization of electrode surfaces,” J. Chem. Soc. Farad. Trans. 89, 1593–1607 (1993).
[CrossRef]

J. Electroanal. Chem. (2)

C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O’Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically-controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995).
[CrossRef]

F. Chao, M. Costa, A. Tadjeddine, “The use of optics for understanding the electrochemical interface,” J. Electroanal. Chem. 329, 313–327 (1992).
[CrossRef]

J. Lightwave Technol. (1)

C. Piraud, J. Yao, E. K. Mwarania, K. O’Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992).
[CrossRef]

Prog. Surf. Sci. (1)

B. E. Conway, “Electrochemical oxide film formation at noble-metals as a surface-chemical process,” Prog. Surf. Sci. 49, 331–452 (1995).
[CrossRef]

Surf. Sci. (1)

J. Horkans, B. D. Cahan, E. Yeager, “Electrode potential scanning ellipsometric spectroscopy: study of formation of the anodic oxide film on noble metals,” Surf. Sci. 46, 1–23 (1974).
[CrossRef]

Other (2)

G. Jerkiewicz, “Surface oxidation of noble-metal electrodes,” in Interfacial Electrochemistry, A. Wieckowski, ed. (Marcel Dekker, New York, 1999), p. 559.

J. O’M. Bockris, A. K. N. Reddy, An Introduction to an Interdisciplinary Area, Vol. 2 of Modern Electrochemistry (Plenum, New York, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Waveguide SPR sensor.

Fig. 2
Fig. 2

Measurement of optical and electrochemical response. W. E., working electrode; C. E., counter electrode.

Fig. 3
Fig. 3

Optical transmittance T of the sensor versus the refractive index of bulk analyte.

Fig. 4
Fig. 4

Current, optical transmittance, and dT/dt versus the potential.

Metrics